一种自适应运动目标检测算法及其应用

来源 :小型微型计算机系统 | 被引量 : 2次 | 上传用户:rstkjs123
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
针对ViBe算法在动态背景下存在鬼影消除时间长、算法适应性差、前景检测噪声多的问题,本文提出一种基于ViBe算法框架的改进算法.该算法采用鬼影检测法标记第1帧中的鬼影区域,并向位于鬼影区域的背景模型中强制引入背景样本,从而快速抑制鬼影;在像素分类过程中,引入自适应分类阈值,解决全局阈值易受动态噪声干扰的问题;在背景模型更新中,根据像素分类的匹配值来动态决定更新因子,提高算法适应场景变化的能力.定性与定量的对比实验结果表明,本文算法相较于ViBe算法能够有效地检测动态背景下的运动目标,应用于河流漂浮物
其他文献
少样本学习是目前机器学习研究领域的一个热点,它能在少量的标记样本中学习到较好的分类模型.但是,在噪声的不确定环境中,传统的少样本学习模型泛化能力弱.针对这一问题,提出
面部表情是人类表达情感的主要方式.本文提出一种将手工特征和深度学习特征相结合,以跨连通道加权模块为基础的面部表情识别方法.将灰度图、局部二值模式特征、Sobel特征作为三通道特征输入,以深度可分离卷积代替标准卷积;同时引入跨连通道加权模块,通过建模不同通道特征之间的关系,更加高效地进行不同层次特征的融合.本文方法在CK+和JAFFE两个常用表情数据集上进行了验证,取得了高达99.77%和99.48