论文部分内容阅读
在数学方法论中,重点阐述了观察、联想、尝试、试验、归纳猜想、类比推广、模拟、化归、公理化方法、数学悖论等数学论证方法,数学与物理方法,数学智力的开发与创新意识的培养等。如果把这些理论和我们的实践教学活动联系起来将使我们的数学课更加有数学味,帮助学生领会内在的数学思想方法,认识数学的本质特征和应用价值。
初中数学 数学方法论 应用
【中图分类号】G633.6【文献标识码】A【文章编号】 1005-8877(2018)25-0097-01
1.数学方法论在解题教学中应用
必要的知识与知识的良好的组织是数学方法论中提及的四要素之一。记得数学大师波利亚曾说过:“良好的组织使得所提供的知识易于用上,这甚至可能比知识的广泛性更为重要。至少在有些情况下,知识太多可能反而成了累赘,可能会妨碍解题者看出一条简单的途径,而良好的组织则有利而无弊。”例如现在的初三复习很大程度上是通过解题教学来实现知识巩固,同时题目的综合性较强,需要学生对于题目有一个很好的认识。在教学中通常会碰到学生对于这类题目会无从下手,或解决问题的信心不够等现象。当然这里有学生对于题目理解上的原因,关键还是他们没有把自己的经验和知识良好的组织起来,必要的反思把知识方法归类。对于初三的学生知识容量应该是够的,但是他们的知识仓库比较零乱,当需要去解决某些问题的时候往往找不到对应的“工具”。所以在初三复习中的重点我们不是多讲几个题目、多做几个练习,而应通过典型例题理清知识体系,优化知识结构。
为了让学生能形成良好的知识结构,教师在问题解决过程中应更多的暴露思维过程,通过问题的合理设置激活学生原有的知识经验,启发他们形成新的理解、新的认识。因此数学课堂教学有效开展离不开教师的合理引导,教学中突出以问题为主线,启迪学生思考,使學生在课堂中深刻的感受如何发现问题、提出问题、分析问题、解决问题的整个过程,理解和认识发生和发展的必然的因果关系,从而领悟到分析、思考和解决问题的数学思想方法,最终内化为自身知识结构的重要部分。
2.数学方法论在概念教学中应用
每一个概念的产生,都是由于知识体系扩充的需要。在教学过程中,要让学生明白为什么要产生这个概念,它有什么意义,这个概念的产生是为了解决什么问题。让学生理解概念产生的必要性。例如,在数系的扩充过程中,为什么要引入负数?我们可以这样解释:为了表示相反意义的量,向东走10米记为+10米,则向西走5米记为 米。或者说是运算的需要4-7不够减,则引入负数得4-7=-3。后来有理数也不能满足需要了,在解方程 2就没有有理数解,但它的解却是客观存在的,正方形的对角线长与边长之比就是这个方程的解,但这个比不能用有理数表示,因此就添入无理数,这促使数的范围扩大到全体实数。同样,为什么要规定 ?它也是有实际背景的。当n为正整数时,方程 ,当 时总有解,但是当 没有解。即使 这样简单的方程也没有解,一1没有平方根。这启发我们对数系作再一次的扩充,从而引入 ,形成复数系。
概念的形成有两种途径:一种是直接从客观事物的空间形式或数量关系的反映而得到的,另一种是在已有数学概念的基础上,经过多层次的抽象概括而成。在教学过程中,要擅于启发学生去发现、探究新概念,提高学生学习数学的兴趣。而概念的形成本身有着一定的发展过程,凝聚着前人探索的智慧。我们不可能重复历史的“原始创造”,而应根据学生自己的体验,用自己的思维方式,重新创造出有关的数学知识,这对学生理解概念非常有意义的。一位数学家说过:“一堆没有亲身体验和视觉形象所支持的概念、定义不能开发智力,而只能关闭思路。”在概念再创造过程种,应对学生的思维给予暴露的机会,充分经历概念形成的两个阶段,从具体到抽象,再从抽象到具体,有利于学生对概念的自我意识和自我反省。
3.数学方法论对提升学生数学素养的作用
数学是一门使人创造性思维严格化和理论体系严谨化的科学。数学方法论强调用演绎与推理的理念,来论证概念间转换的恒等变化,从中体现准确、简洁地揭示有条件到结论严密的逻辑关系。而缺乏演绎与推理的人,会犯“想当然”的错误。
著名数学家克莱因认为“数学史是教学的指南”。历史能揭示出数学知识的显示、来源与应用,它不仅告诉我们数学知识当时如何出现在人们头脑中的——即如何产生的。例如直角坐标系的创建,在代数和几何上架起了一座桥梁,它使几何概念用数来表示,几何图形也可以用代数形式来表示。这不仅可以活跃课堂教学,激发学生的学习兴趣,还可以拓宽学生的视野,培养学生全方位的思维能力。在这个过程也能让学生明白任何一项成就都需要付出艰辛的努力。引导学生正确看待学习过程中遇到的困难、挫折和失败,树立学好数学的信心,培养刻苦探究的学习态度。
参考文献
[1]徐利治,《数学方法论选讲》华中工学院出版社1983
[2]郑毓信,《数学方法论入门》浙江教育出版社2008
初中数学 数学方法论 应用
【中图分类号】G633.6【文献标识码】A【文章编号】 1005-8877(2018)25-0097-01
1.数学方法论在解题教学中应用
必要的知识与知识的良好的组织是数学方法论中提及的四要素之一。记得数学大师波利亚曾说过:“良好的组织使得所提供的知识易于用上,这甚至可能比知识的广泛性更为重要。至少在有些情况下,知识太多可能反而成了累赘,可能会妨碍解题者看出一条简单的途径,而良好的组织则有利而无弊。”例如现在的初三复习很大程度上是通过解题教学来实现知识巩固,同时题目的综合性较强,需要学生对于题目有一个很好的认识。在教学中通常会碰到学生对于这类题目会无从下手,或解决问题的信心不够等现象。当然这里有学生对于题目理解上的原因,关键还是他们没有把自己的经验和知识良好的组织起来,必要的反思把知识方法归类。对于初三的学生知识容量应该是够的,但是他们的知识仓库比较零乱,当需要去解决某些问题的时候往往找不到对应的“工具”。所以在初三复习中的重点我们不是多讲几个题目、多做几个练习,而应通过典型例题理清知识体系,优化知识结构。
为了让学生能形成良好的知识结构,教师在问题解决过程中应更多的暴露思维过程,通过问题的合理设置激活学生原有的知识经验,启发他们形成新的理解、新的认识。因此数学课堂教学有效开展离不开教师的合理引导,教学中突出以问题为主线,启迪学生思考,使學生在课堂中深刻的感受如何发现问题、提出问题、分析问题、解决问题的整个过程,理解和认识发生和发展的必然的因果关系,从而领悟到分析、思考和解决问题的数学思想方法,最终内化为自身知识结构的重要部分。
2.数学方法论在概念教学中应用
每一个概念的产生,都是由于知识体系扩充的需要。在教学过程中,要让学生明白为什么要产生这个概念,它有什么意义,这个概念的产生是为了解决什么问题。让学生理解概念产生的必要性。例如,在数系的扩充过程中,为什么要引入负数?我们可以这样解释:为了表示相反意义的量,向东走10米记为+10米,则向西走5米记为 米。或者说是运算的需要4-7不够减,则引入负数得4-7=-3。后来有理数也不能满足需要了,在解方程 2就没有有理数解,但它的解却是客观存在的,正方形的对角线长与边长之比就是这个方程的解,但这个比不能用有理数表示,因此就添入无理数,这促使数的范围扩大到全体实数。同样,为什么要规定 ?它也是有实际背景的。当n为正整数时,方程 ,当 时总有解,但是当 没有解。即使 这样简单的方程也没有解,一1没有平方根。这启发我们对数系作再一次的扩充,从而引入 ,形成复数系。
概念的形成有两种途径:一种是直接从客观事物的空间形式或数量关系的反映而得到的,另一种是在已有数学概念的基础上,经过多层次的抽象概括而成。在教学过程中,要擅于启发学生去发现、探究新概念,提高学生学习数学的兴趣。而概念的形成本身有着一定的发展过程,凝聚着前人探索的智慧。我们不可能重复历史的“原始创造”,而应根据学生自己的体验,用自己的思维方式,重新创造出有关的数学知识,这对学生理解概念非常有意义的。一位数学家说过:“一堆没有亲身体验和视觉形象所支持的概念、定义不能开发智力,而只能关闭思路。”在概念再创造过程种,应对学生的思维给予暴露的机会,充分经历概念形成的两个阶段,从具体到抽象,再从抽象到具体,有利于学生对概念的自我意识和自我反省。
3.数学方法论对提升学生数学素养的作用
数学是一门使人创造性思维严格化和理论体系严谨化的科学。数学方法论强调用演绎与推理的理念,来论证概念间转换的恒等变化,从中体现准确、简洁地揭示有条件到结论严密的逻辑关系。而缺乏演绎与推理的人,会犯“想当然”的错误。
著名数学家克莱因认为“数学史是教学的指南”。历史能揭示出数学知识的显示、来源与应用,它不仅告诉我们数学知识当时如何出现在人们头脑中的——即如何产生的。例如直角坐标系的创建,在代数和几何上架起了一座桥梁,它使几何概念用数来表示,几何图形也可以用代数形式来表示。这不仅可以活跃课堂教学,激发学生的学习兴趣,还可以拓宽学生的视野,培养学生全方位的思维能力。在这个过程也能让学生明白任何一项成就都需要付出艰辛的努力。引导学生正确看待学习过程中遇到的困难、挫折和失败,树立学好数学的信心,培养刻苦探究的学习态度。
参考文献
[1]徐利治,《数学方法论选讲》华中工学院出版社1983
[2]郑毓信,《数学方法论入门》浙江教育出版社2008