论文部分内容阅读
随着二维主成分分析法在人脸识别中的应用,许多基于2D的分析方法日益成熟。相比于PCA算法基于向量的特征提取,2DPCA算法是基于矩阵的特征提取。与依赖于特征矩阵的列或特征矩阵的全部矩阵的方法不同,提出了基于特征矩阵行的距离测量方法,该算法与KNN算法进行了结合。通过使用该方法可以缓解2DPCA算法相比于基于主成分分析的算法(PCA)需较多系数的问题。在人脸数据库上的实验结果表明,所提方法的分辨精度比2DPCA方法高,在准确性和存储容量方面超过了2DPCA算法。