论文部分内容阅读
针对手绘草图识别算法大多采用限制用户绘制习惯来实现笔画分组的问题,提出一种基于贝叶斯网络的手绘草图识别算法。该算法将手绘草图识别中的笔画分组和符号识别统一为一个过程,用贝叶斯网络拓扑结构来表达草图结构信息。基于该网络,根据最大后验概率对连续输入的笔画进行动态最优分组,同时在线预测每组笔画的符号类别。实验结果表明,该方法是一种有效的在线递进式笔画分组和识别算法,在电路符号手绘识别中达到71.3%的过程识别率和85%的最终识别率。