一类非线性随机微分方程的统计性质

来源 :数学杂志 | 被引量 : 0次 | 上传用户:gy13006467077
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
本文研究了一类分数布朗运动(fBm)驱动的非线性随机微分方程解的统计性质的问题.利用Lamperti变换的方法,可以把该方程转换为分数布朗运动驱动的线性随机微分方程,从而可以利用高斯过程的相关性质,获得该非线性随机微分方程解的期望和方差.在特殊情况下,该非线性随机微分方程的解是分数Cox-Ingersoll-Ross(fCIR)过程,该方法可以推广到计算分数Cox-Ingersoll-Ross(fCIR)过程的相关统计性质.
其他文献
In this paper,we prove gradient estimates for the positive solutions of Lu=0 and Lu ?u/?t on conformal solitons,where L(·)=Δ(·)+.We also give some applications for them.
对2021年7月广东省学业水平合格性考试生物学试题内容进行分析,探索新改革以及新教材背景下试题内容的特征,为今后的生物学教学以及等级性考试备考提供参考.
In this paper,we consider Ricci flow on four dimensional closed manifold with bounded scalar curvature,noncollasping volume and bounded diameter.Under such conditions,we can show that the manifold has finitely many diffeomorphism types,which generalizes C
In this paper we will show how the Bohr-Sommerfeld levels of a quantum completely integrable system can be computed modulo O((h)∞)by an inductive procedure starting at stage zero with the Bohr-Sommerfeld levels of the corresponding classical completely in
We consider the inverse curvature flows of smooth,closed and strictly convex rotation hypersurfaces in space forms Mnκ+1 with speed function given by F-α,where α ∈(0,1]for κ=0,-1,α=1 for κ=1 and F is a smooth,symmetric,strictly increasing and 1-homogeneou
Lin-Lu-Yau introduced a notion of Ricci curvature for graphs and obtained a complete classification for all Ricci-flat graphs with girth at least five.In this paper,we characterize all Ricci-flat graphs of girth four with vertex-disjoint 4-cycles.
This short note is concerned with a measure version criterion for hypersurfaces to be minimal.Certain natural flows and associated reflections for many minimal hypercones,including minimal isoparametric hypercones and area-minimizing hypercones,are studie
In this paper,we study the regularity of the complex Hessian equation when the right hand has pole singularity.We show the H?lder continuity of the solution to the Dirichlet problem.In particular,for the complex Monge-Ampère equation,we improve a result o
In this paper,the curve shortening flow in a general Riemannian manifold is studied,Altschuler\'s results about the flow for space curves are generalized.For any n-dimensional(n≥2)Riemannian manifold(M,g)with some natural assumptions,we prove the planar