论文部分内容阅读
摘要:随着我国经济的迅速发展,全国大中型城市的高层建筑迅速增多。在建筑工程领域中,建筑结构设计是极其重要的一个环节,设计质量直接影响着工程周期、成本节约,可以说是一个工程中重要的生命线。
中图分类号:TU318文献标识码: A 文章编号:
引言
由于高层建筑结构不同体系具有不同的力学特性,在进行结构设计时,需结合不同的设计计算方法和构造处理措施,不断吸取工程实践经验才能取得良好的结构设计方案。
1、高层建筑结构设计特点
1.1 水平荷载成为决定因素
一方面,因为楼房自重和楼面使用荷载在竖向构件中所引起的轴力和弯矩的数值,仅与楼房高度的一次方成正比;而水平荷载对结构产生的倾覆力矩,以及由此在竖向构件中引起的轴力,是与楼房高度的两次方成正比;另一方面,对某一定高度楼房来说,竖向荷载大体上是定值,而作为水平荷载的风荷载和地震作用,其数值是随结构动力特性的不同而有较大幅度的变化。
1.2 轴向变形不容忽视
高层建筑中,竖向荷载数值很大,能够在柱中引起较大的轴向变形,从而会对连续梁弯矩产生影响,造成连续梁中间支座处的负弯矩值减小,跨中正弯矩之和端支座负弯矩值增大;还会对预制构件的下料长度产生影响,要求根据轴向变形计算值,对下料长度进行调整;另外对构件剪力和侧移产生影响,与考虑构件竖向变形比较,会得出偏于不安全的结果。
1.3 侧移成为控制指标
与较低楼房不同,结构侧移已成为高楼结构设计中的关键因素。随着楼房高度的增加,水平荷载下结构的侧移变形迅速增大,因而结构在水平荷载作用下的侧移应被控制在某一限度之内。
1.4 结构延性是重要设计指标。一般在建筑施工设计中,在保证建筑物应有的强度的同时,要需要保证建筑物具有一定的延性。这是为了使建筑物具有一定的变形能力,以适应因自然环境或人为因素而引起的楼房震动,避免因缺乏延性而在轻微震动中发生建筑倒塌事故。高层建筑相对于低层建筑来讲,延性需要更大一些,即保证高层建筑结构更柔一些,这就需要在结构设计中采取合理科学的措施,使高层建筑结构在使用中具有足够的延性。
2、建筑结构设计中的常见问题
2.1 屋面梁配筋数量不足
在设计人员进行结构建模的过程中,有些设计师为了图方便或是追赶设计的进度,屋面梁直接照搬了下层梁的尺寸,这样设计就是认为屋面梁的荷载较小,同时配筋的数量也不多,这样在以后的施工过程或使用时一旦出现混凝土收缩、温度突然变化或受力不均匀时,屋面梁都会因为配筋数量的不足而出现裂缝宽度过大的问题。
2.2 忽视纵向框架的设计
进行框架结构设计时,忽视了纵向框架的设计,只注意了横向框架的设计。现阶段,在我国最新的建筑结构抗震设计规范中要求了水平地震的作用应按照两个主轴的方向进行计算的,那么该方向的抗侧力构建就应承担各方面地震的作用力。
2.3 楼板变形程度的计算存在问题
很多设计在进行结构布置时没有采取足够的措施或是设计人员在设计时缺乏基本的结构概念或采用基本的楼层变形的计算程序。这些程序的编程在数学上的力学模型上是绝对成立的,但是在实际中应用到计算楼板的变形程度却并不是准确无误的。而如果一个计算程序的前提就是存在一定的瑕疵的,那么利用这个程序计算出的结构就肯定也是存在问题的了。这样所进行的结构设计肯定是存在了结构安全系数不足以及结构的某些构件或是部位安全储备太大等诸多的问题。
3、解决建筑结构设计问题的改善对策
3.1 板和梁的跨度计算
通常情况下,在教材中所讲到的计算跨度,如净跨度的1.05倍等,一些概念和规定通常都只适用于常规的结构设计,而它对于宽扁梁往往是不适用的。板梁结构实际上就是在梁的中心线上设有一个刚性的支座,消除了单一的梁的概念,而是将梁和板统一成了一个变截面板。在扁梁结构中,当板厚和梁高相差不大时,计算的长度就应取到梁的中心处,选择梁边弯矩和板厚,以及梁中心处的弯矩和梁厚进行配筋,并且要取两者的大值。实际的设计过程中,柱子也可以看成一个超大的截面梁,因此在对梁配筋时应选择柱边弯矩,削峰是比较正常的,存在问题时往往都是不削峰的。
3.2 主梁上有次梁时要添加附加筋
这种情况下,应先考虑添加箍筋,附加的箍筋实际上就是指在次梁的界面范围内箍筋缺乏或是没有箍筋时,就应该在次梁的两侧补上箍筋,通常情况下附加筋都是要有的。并且在建筑结构的设计规范中也明确的说明了,在梁的界面高度范围内的或是梁下部的集中荷载,其都是由附加筋来承担的,所以在梁上后做的次梁或是梁上的集中荷载就不需要添加附加筋的。总之添加附加筋的原则是:主梁上的次梁存在开裂的问题时,如果次梁的受压区顶至主梁底部的截面高度的混凝土添加了箍筋,并且确保能够承受次梁产生的剪力,那么主梁就不需添加附加筋。梁上的集中力与产生的剪力在整个梁的范围内都是一样的,那么只要抗剪满足,集中力也是满足的。
3.3 箱、筏基础底板的挑板
从结构设计的角度来讲,最为经济的一种方式是能出挑板并且能够调匀边跨底板钢筋,尤其是当底板的钢筋采用了通长的布置方式时,整个底板的通长筋也不会因为边跨钢筋而增大。当出了挑板时,基底的附加应力就会得到降低,当基础形式的位置是在天然地基和人工地基的坎上时,那么加挑板时最好选择天然地基,从而有效的降低整体的沉降。而一旦荷载出现了偏心的情况,在某个特殊的位置设置挑板时,就能够调整沉降差并且防止整体倾斜的现象出现。窗井是一个较为特殊的部位,它可以看作是挑板上砌墙,因此就不用再出长挑板了,这个问题并不是绝对的,应灵活變通,如某建筑有地下室,窗井的横隔墙就会很紧密并且内部墙体与横隔墙是相互连通的,这时就应该灵活的设置。
3.4 设计刚性楼面
为了确保程序计算结构能够真实的反映出建筑结构的实际的受力情况,设计人员应尽量将楼层设计成刚性的楼面。而怎样才能设计成刚性楼面呢?首先设计人员设计时不应采用楼面有变形的平面;同时设计人员应充分的保证配筋的构造以及结构的布置方式,当然如果有些建筑结构无法完全的满足刚性楼面,但是其使用功能是确实需要的,并且本身建筑结构的设计效果又是十分优秀的,那么设计人员在设计时就应通过采取采用斜向配筋、提高边梁暗梁的配筋数量、增加梁系梁板、采用双层的配筋形式以及洞口边加设边梁和暗梁等办法,尽量弥补因其不是绝对的刚性楼板假定而产生的误差,使其尽量的符合刚性楼板的假定条件。
3.5 沉降计算
在基坑开挖的过程中,摩擦角范围内坑边的基底土是要受到一定的约束的,所以它是不反弹的,那么坑中心位置处的地基土就是要反弹的,而回弹的部分就需要人工的进行清理。而如果基础较大时,其受到了约束就比较小,箱基就是这种类型的,在对其进行沉降计算时就要按照基底的压力进行计算,被坑边土所约束的那一部分就可以看作是用于安全储备的,这也是计算出来的沉降值是要大于实际施工中的沉降值的主要原因。而如果当基础很小时,那么其受到了约束就是很大的,这是就可以忽略回弹的部分,所以在计算沉降时就应按照基底的附加应力进行计算。
结语
综上所述,高层建筑结构设计是一项系统性的工作,涉及内容繁多且复杂。因此,工程设计人员要进一步深入研究建筑结构设计的技术问题,选择合理的结构方案,同时提高结构设计水平,以完善建筑的各项功能。
参考文献
[1] 李新磊,王志镨. 关于高层建筑工程结构设计的综合探讨[J]. 民营科技. 2012(05)
[2] 热赛提·米拉提汗. 房屋建筑工程结构设计的分析研究[J]. 农家科技. 2011(S1)
[3] 黄辉亮. 浅析当前我国高层建筑结构设计与选型[J]. 知识经济. 2011(10)
中图分类号:TU318文献标识码: A 文章编号:
引言
由于高层建筑结构不同体系具有不同的力学特性,在进行结构设计时,需结合不同的设计计算方法和构造处理措施,不断吸取工程实践经验才能取得良好的结构设计方案。
1、高层建筑结构设计特点
1.1 水平荷载成为决定因素
一方面,因为楼房自重和楼面使用荷载在竖向构件中所引起的轴力和弯矩的数值,仅与楼房高度的一次方成正比;而水平荷载对结构产生的倾覆力矩,以及由此在竖向构件中引起的轴力,是与楼房高度的两次方成正比;另一方面,对某一定高度楼房来说,竖向荷载大体上是定值,而作为水平荷载的风荷载和地震作用,其数值是随结构动力特性的不同而有较大幅度的变化。
1.2 轴向变形不容忽视
高层建筑中,竖向荷载数值很大,能够在柱中引起较大的轴向变形,从而会对连续梁弯矩产生影响,造成连续梁中间支座处的负弯矩值减小,跨中正弯矩之和端支座负弯矩值增大;还会对预制构件的下料长度产生影响,要求根据轴向变形计算值,对下料长度进行调整;另外对构件剪力和侧移产生影响,与考虑构件竖向变形比较,会得出偏于不安全的结果。
1.3 侧移成为控制指标
与较低楼房不同,结构侧移已成为高楼结构设计中的关键因素。随着楼房高度的增加,水平荷载下结构的侧移变形迅速增大,因而结构在水平荷载作用下的侧移应被控制在某一限度之内。
1.4 结构延性是重要设计指标。一般在建筑施工设计中,在保证建筑物应有的强度的同时,要需要保证建筑物具有一定的延性。这是为了使建筑物具有一定的变形能力,以适应因自然环境或人为因素而引起的楼房震动,避免因缺乏延性而在轻微震动中发生建筑倒塌事故。高层建筑相对于低层建筑来讲,延性需要更大一些,即保证高层建筑结构更柔一些,这就需要在结构设计中采取合理科学的措施,使高层建筑结构在使用中具有足够的延性。
2、建筑结构设计中的常见问题
2.1 屋面梁配筋数量不足
在设计人员进行结构建模的过程中,有些设计师为了图方便或是追赶设计的进度,屋面梁直接照搬了下层梁的尺寸,这样设计就是认为屋面梁的荷载较小,同时配筋的数量也不多,这样在以后的施工过程或使用时一旦出现混凝土收缩、温度突然变化或受力不均匀时,屋面梁都会因为配筋数量的不足而出现裂缝宽度过大的问题。
2.2 忽视纵向框架的设计
进行框架结构设计时,忽视了纵向框架的设计,只注意了横向框架的设计。现阶段,在我国最新的建筑结构抗震设计规范中要求了水平地震的作用应按照两个主轴的方向进行计算的,那么该方向的抗侧力构建就应承担各方面地震的作用力。
2.3 楼板变形程度的计算存在问题
很多设计在进行结构布置时没有采取足够的措施或是设计人员在设计时缺乏基本的结构概念或采用基本的楼层变形的计算程序。这些程序的编程在数学上的力学模型上是绝对成立的,但是在实际中应用到计算楼板的变形程度却并不是准确无误的。而如果一个计算程序的前提就是存在一定的瑕疵的,那么利用这个程序计算出的结构就肯定也是存在问题的了。这样所进行的结构设计肯定是存在了结构安全系数不足以及结构的某些构件或是部位安全储备太大等诸多的问题。
3、解决建筑结构设计问题的改善对策
3.1 板和梁的跨度计算
通常情况下,在教材中所讲到的计算跨度,如净跨度的1.05倍等,一些概念和规定通常都只适用于常规的结构设计,而它对于宽扁梁往往是不适用的。板梁结构实际上就是在梁的中心线上设有一个刚性的支座,消除了单一的梁的概念,而是将梁和板统一成了一个变截面板。在扁梁结构中,当板厚和梁高相差不大时,计算的长度就应取到梁的中心处,选择梁边弯矩和板厚,以及梁中心处的弯矩和梁厚进行配筋,并且要取两者的大值。实际的设计过程中,柱子也可以看成一个超大的截面梁,因此在对梁配筋时应选择柱边弯矩,削峰是比较正常的,存在问题时往往都是不削峰的。
3.2 主梁上有次梁时要添加附加筋
这种情况下,应先考虑添加箍筋,附加的箍筋实际上就是指在次梁的界面范围内箍筋缺乏或是没有箍筋时,就应该在次梁的两侧补上箍筋,通常情况下附加筋都是要有的。并且在建筑结构的设计规范中也明确的说明了,在梁的界面高度范围内的或是梁下部的集中荷载,其都是由附加筋来承担的,所以在梁上后做的次梁或是梁上的集中荷载就不需要添加附加筋的。总之添加附加筋的原则是:主梁上的次梁存在开裂的问题时,如果次梁的受压区顶至主梁底部的截面高度的混凝土添加了箍筋,并且确保能够承受次梁产生的剪力,那么主梁就不需添加附加筋。梁上的集中力与产生的剪力在整个梁的范围内都是一样的,那么只要抗剪满足,集中力也是满足的。
3.3 箱、筏基础底板的挑板
从结构设计的角度来讲,最为经济的一种方式是能出挑板并且能够调匀边跨底板钢筋,尤其是当底板的钢筋采用了通长的布置方式时,整个底板的通长筋也不会因为边跨钢筋而增大。当出了挑板时,基底的附加应力就会得到降低,当基础形式的位置是在天然地基和人工地基的坎上时,那么加挑板时最好选择天然地基,从而有效的降低整体的沉降。而一旦荷载出现了偏心的情况,在某个特殊的位置设置挑板时,就能够调整沉降差并且防止整体倾斜的现象出现。窗井是一个较为特殊的部位,它可以看作是挑板上砌墙,因此就不用再出长挑板了,这个问题并不是绝对的,应灵活變通,如某建筑有地下室,窗井的横隔墙就会很紧密并且内部墙体与横隔墙是相互连通的,这时就应该灵活的设置。
3.4 设计刚性楼面
为了确保程序计算结构能够真实的反映出建筑结构的实际的受力情况,设计人员应尽量将楼层设计成刚性的楼面。而怎样才能设计成刚性楼面呢?首先设计人员设计时不应采用楼面有变形的平面;同时设计人员应充分的保证配筋的构造以及结构的布置方式,当然如果有些建筑结构无法完全的满足刚性楼面,但是其使用功能是确实需要的,并且本身建筑结构的设计效果又是十分优秀的,那么设计人员在设计时就应通过采取采用斜向配筋、提高边梁暗梁的配筋数量、增加梁系梁板、采用双层的配筋形式以及洞口边加设边梁和暗梁等办法,尽量弥补因其不是绝对的刚性楼板假定而产生的误差,使其尽量的符合刚性楼板的假定条件。
3.5 沉降计算
在基坑开挖的过程中,摩擦角范围内坑边的基底土是要受到一定的约束的,所以它是不反弹的,那么坑中心位置处的地基土就是要反弹的,而回弹的部分就需要人工的进行清理。而如果基础较大时,其受到了约束就比较小,箱基就是这种类型的,在对其进行沉降计算时就要按照基底的压力进行计算,被坑边土所约束的那一部分就可以看作是用于安全储备的,这也是计算出来的沉降值是要大于实际施工中的沉降值的主要原因。而如果当基础很小时,那么其受到了约束就是很大的,这是就可以忽略回弹的部分,所以在计算沉降时就应按照基底的附加应力进行计算。
结语
综上所述,高层建筑结构设计是一项系统性的工作,涉及内容繁多且复杂。因此,工程设计人员要进一步深入研究建筑结构设计的技术问题,选择合理的结构方案,同时提高结构设计水平,以完善建筑的各项功能。
参考文献
[1] 李新磊,王志镨. 关于高层建筑工程结构设计的综合探讨[J]. 民营科技. 2012(05)
[2] 热赛提·米拉提汗. 房屋建筑工程结构设计的分析研究[J]. 农家科技. 2011(S1)
[3] 黄辉亮. 浅析当前我国高层建筑结构设计与选型[J]. 知识经济. 2011(10)