论文部分内容阅读
针对目前数据融合算法存在的置信度无法获取的问题,提出了一种基于潜在变量二元回归模型(Latent Variable Binary Regression Model)的多传感器数据融合算法。将每个传感器获取的特征值作为多变量回归模型中的相关变量,通过Gibbs抽样得到潜在变量的分布概率,确定多变量回归模型中的表征量作为融合结果,并以潜在变量的分布概率作为融合结果的置信度。基于实地采集的运动目标震动信号进行仿真实验,结果表明该融合方法拥有较好的识别效果,同时能够给出识别结果的置信度。其中错分类的结果具有较低的