论文部分内容阅读
从可逆电池H_2|HCl(I_1),KCl(I_2),BaCl_2(I_3)|AgCl-Ag的电位测定求得了在25℃时四元体系HCl-KCl-BaCl_2-H_2O中盐酸的活度系数ν_1。结果表明,在恒定的总离子强度I及I_3条件下,盐酸的的活度系数的对数亦随I_2线性地变化,但其数值比Harned在三元体系中所得到的对应数值略大一些,和简单的1-1价硷金属卤化物四元体系中行为略为不同,可能应表示为: logγ_1=logγ_(1(0))-a_(12)I_2-a_(13)I_3-K_(23)I_2I_3其中K_(23)为电解质2和3的作用系数。对我们所研究的体系,K的数值较小。初步的实验结果表明,我们所推广的计算混介电解质活度系数的Glueckauf公式可以近似地应用于实际体系。应用热力学的交叉方程式于四元体系可以导出和前人在三元体系中所得到的一些相同的公式,从这些式子有可能从实验的a_(12)、a_(13)数值求出a_(21)、a_(31)等数值。
The activity coefficient ν_1 of HCl in the quaternary system HCl-KCl-BaCl 2 -H 2 O was obtained from the potentials of reversible cell H_2 | HCl (I_1), KCl (I_2), BaCl_2 (I_3) | AgCl- The results show that the logarithm of the activity coefficient of hydrochloric acid changes linearly with I 2 at constant total ionic strength I and I 3, but its value is slightly larger than that of Harned’s corresponding value in ternary system. And simple 1-1-valent metal halide quaternary system may be slightly different and may be expressed as: logγ_1 = logγ_ (1 (0)) - a_ (12) I_2-a_ (13) I_3-K_ I_2I_3 where K_ (23) is the interaction coefficient of electrolytes 2 and 3. For the system we studied, K is smaller. The preliminary experimental results show that the Glueckauf formula that we promote to calculate the activity coefficient of mixed electrolyte can be applied to the practical system approximately. Using the thermodynamic cross-equation in the quaternion system, we can derive some of the same formulas obtained by our predecessors in the ternary system. It is possible from these equations to find a_ (12) and a_ (13) 21), a_ (31) and other values.