论文部分内容阅读
研究处于均布磁场中的理想导体的二维电磁热弹性耦合问题,引入势函数使控制方程转化为3个偏微分方程.运用Laplace变换和Fourier变换得到该问题在变换域内的精确表达式,再通过级数展开和Laplace逆变换法求得在时间较短时的逆变换,得到时间-空间域内问题的解.运用此方法研究了表面受到热冲击的半无限空间问题.给出了电磁热弹性波、膨胀波和横向波传播的速度,并通过数值计算,给出了各个场量的分布图.所得结论与已有的结论一致.