论文部分内容阅读
目的基于能量最小化的变分图像分割方法已经受到研究人员的广泛重视,取得了丰硕成果。但是,针对图像中存在的噪音污染、目标被遮挡等情况,则难以正确分割。引入先验形状信息是解决该问题的一个重要方向,但是随之而带来的姿态变化问题是一个难点。传统的做法是在每步迭代过程中单独计算姿态变换参数,导致计算量大。方法在基于Kernel PCA(KPCA)的形状先验模型基础上,提出一种具有内在的姿态不变性的KPCA形状先验模型,并将之融合到C-V变分图像分割模型中。结果提出模型无须在每步迭代中显式地单独计算姿态变换参数,