【摘 要】
:
社交推荐(Social Recommendation,SoRec)模型是一类典型的融合信任信息的矩阵分解方法,在个性化推荐系统中得到了广泛的研究和应用.目前大部分SoRec模型的研究成果都是基于显式信任信息,这对于实际中难以获取显式信息的数据集无法使用,并且现有的SoRec模型尚未充分考虑不同情形下潜在因子的多变性,大大影响了推荐的准确性.为了解决上述问题,本文针对仅有评分信息的非负目标矩阵,首先利用已知用户评分信息挖掘用户间的隐式信任关系矩阵;然后基于得到的信任信息,考虑两种不同情形下用户潜在特征矩阵的
【机 构】
:
上海理工大学 光电信息与计算机工程学院,上海200093
论文部分内容阅读
社交推荐(Social Recommendation,SoRec)模型是一类典型的融合信任信息的矩阵分解方法,在个性化推荐系统中得到了广泛的研究和应用.目前大部分SoRec模型的研究成果都是基于显式信任信息,这对于实际中难以获取显式信息的数据集无法使用,并且现有的SoRec模型尚未充分考虑不同情形下潜在因子的多变性,大大影响了推荐的准确性.为了解决上述问题,本文针对仅有评分信息的非负目标矩阵,首先利用已知用户评分信息挖掘用户间的隐式信任关系矩阵;然后基于得到的信任信息,考虑两种不同情形下用户潜在特征矩阵的组合,提出了一种改进的SoRec(Improved Social Recommendation,ISoRec)模型;再者,通过在梯度下降算法中引入单因子乘法更新规则进行模型训练,不仅保证目标矩阵的非负性,还提高了算法在稀疏数据集的适用性.最后,本文结合真实有效的数据集对所有模型进行实验验证其有效性,结果证明ISoRec模型在精确度上有所提升.
其他文献
2021网络空间安全人才峰会(CSTC)暨中国网络空间安全人才教育论坛年会于近日在湖南长沙顺利举行.本次会议由中国网络空间安全人才教育论坛、长沙国家高新技术产业开发区管理委员会和广州大学联合主办,中国产学研合作促进会、教育部高等学校网络空间安全专业教学指导委员会等多家单位共同承办.会议聚焦网安人才培养面临的挑战和人才需求短板,探索网安人才培养的模式与路径,分享网安人才培养成果与案例.会议联合了产、学、研、用多方力量,有来自政府主管部门、网安行业的代表及专家学者、新闻媒体代表近300人参会.会议设有1个主论
近日,科学技术部公示了国家重点研发计划“网络协同制造和智能工厂”重点专项2021年度项目立项名单,由重庆大学牵头申报的青年科学家项目“场景驱动的产品生态数据空间设计理论与方法”成功获批.rn该项目依托重庆大学信息物理社会可信服务计算教育部重点实验室,在重庆市科技局、重庆大学科发院及大数据与软件学院的指导下,由大数据与软件学院鄢萌研究员担任项目负责人,青年教师徐洲博士担任项目骨干,联合浙江大学和海尔智能技术共同申报,项目获国家专项资助经费500万元,实施周期为3年.
当前,卷积神经网络越来越多的应用于工业生产中,传统的基于CPU及GPU的神经网络平台存在体积大、能耗高等缺点,在工业生产现场部署存在困难.基于ARM的嵌入式平台虽然易于部署,但存在算力低的缺点,难以高效的实现卷积神经网络.针对此问题,本文设计并实现了一种基于Zynq平台的卷积神经网络单元,通过充分利用Zynq平台上FPGA端并行计算的特点,对卷积神经网络中卷积层进行加速,使用高层次综合(High-Level Synthesis,HLS)进行卷积层和池化层IP核的设计,并针对性的给出优化方案.最终实现在嵌入
面临大量数据时,如何从中摘取一部分感兴趣的数据帮助用户进行决策是数据库系统的一项重要功能.在过去几十年里,top-k和skyline查询是两种最常用的技术手段,但他们分别存在不能控制输出结果大小与需要用户提供效用函数的缺陷.为克服两者的缺陷,k代表点查询技术应运而生;其中性质较好、受到较多关注的是k-遗憾查询.本文首先回顾了skyline、top-k查询和几种典型的代表点查询.随后,详细地介绍了k-遗憾查询的概念与方法,从多个角度分析了提升查询质量的途径,并对k-遗憾查询的变体进行了研究.最后对未来遗憾最
针对蝗虫优化算法(Grasshopper Optimization Algorithm,GOA)存在求解精度低,收敛速度慢等问题,提出具有扰动机制和强化莱维飞行的蝗虫优化算法(DLGOA),位置参数部分使用非线性曲线函数去平衡算法局部开发和全局探索;扰动因子引入位置更新公式,提高算法寻优精度、收敛速度;将莱维飞行的步长改进以避免陷入局部最优,并利用高斯分布的随机性增加种群多样性.通过对7个基准函数进行仿真实验以及使用Wilcoxon秩和检验来评价算法性能,实验结果表明DLGOA算法具有较好的鲁棒性以及寻优
复杂网络重要节点在遭受敌方蓄意攻击时往往会造成网络的大范围瘫痪,评估出重要节点对网络的可靠性和网络安全具有重要意义.现有的评估重要节点的中心性准则仅针对某一测度,具有局限性,因此,文章提出了一种结合现有中心性准则对复杂网络节点进行重要度排序的方法.该方法结合度中心性、中介中心性、接近中心性和特征向量中心性准则,从多角度多方位评估节点重要性.该方法借助熵权法求得每项准则的权重,避免了人为因素带来的偏差.采用多准则妥协解排序法(VIKOR)对节点的重要度进行排序,在3个典型的复杂网络上利用病毒传播模型(SI)
中文金融评价文本是了解金融行情和判断金融行业繁荣程度的主要载体,对其中的评价要素进行抽取和分析可以在一定程度上的帮助决策者做出判断.传统的抽取方法更侧重于寻找规则,工作量大,且在句子复杂或者不规范的情况下,难以充分考虑句子的句法特征.为了解决该问题,本文构建BBG-BMC模型,利用基于图自注意力机制的混合词编码模型BBG(BERT-BiLSTM-GAT)进行词语编码,在经典的BiLSTM-CRF模型中增加自注意力机制(BiLSTM-多头自注意力机制-CRF,BMC)进行序列标注.该模型的特点是:1)通过图
在线服务信誉是若干服务信用行为累积的结果,对于在线服务选择具有重要的作用.信誉系统管理者为获取不当利益,可通过删除、增加用户或服务进行控制以达到操纵服务信誉的目的.为此提出利用Fallback的在线服务信誉防控制机制.首先获取所有用户对在线服务的序数偏好集合;其次根据所有用户的序数偏好得到满足Fallback绝对多数阈值条件的在线服务信誉向量;然后将在线服务信誉控制建模为判断某一服务是否能通过控制成为信誉最高的服务的问题;最后证明Fallback方法的防控制性,即证明该控制问题是固定参数不可解的.通过实验
近日,上海交通大学电子信息与电气工程学院电子工程系区域光纤通信网和新型光通信系统国家重点实验室何广强团队和姜淳团队在拓扑量子光学领域取得进展,研究成果以《Topological Protection of Continuous Frequency Entangled Biphoton States》(《拓扑保护的连续频率纠缠双光子态》)为题在国际期刊Nanophotonics发表.该工作提出了一种在光拓扑绝缘体中实现受拓扑保护的连续频率纠缠双光子态的方案.
嗅探攻击是一种常见且隐蔽性很强的网络攻击方式,这种攻击方式对通信数据的机密性造成了严重威胁,然而传统的防御手段受制于网络攻防对抗的严重不对称性,难以有效应对这种威胁.文章提出了一种面向SDN数据层的双虚假IP地址动态跳变技术,首先利用双虚假IP地址破坏通信数据在空间维度上的关联性,然后通过周期性IP地址跳变破坏通信数据在时间维度上的关联性,从而提高嗅探攻击者重组通信数据的难度以及成本.抗攻击有效性分析以及仿真实验表明,文章所提技术在提高抗嗅探攻击能力的同时,能保证较低的CPU消耗和通信时延.