论文部分内容阅读
根据边坡稳定问题具有的模糊性,提出了一种判定边坡稳定性的模糊神经网络模型。该系统仅从期望输入输出数据集即可达到获取知识、确定模糊初始规则基的目的。再利用神经网络学习能力便不难修改规则库中的模糊规则以及隶属函数和网络权值等参数,这样大大减少了规则匹配过程,加快了推理速度,从而极大程度地提高了系统的自适应能力。最后用收集到的边坡数据样本训练和测试模糊神经网络模型,结果表明该模糊神经网络预测边坡稳定性是可行的、有效的。