一种VVC帧内编码单元快速划分算法

来源 :小型微型计算机系统 | 被引量 : 0次 | 上传用户:z306075045
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
为了降低下一代通用视频编码(VVC)帧内预测编码单元(CU)划分的计算复杂度,提出一种基于梯度幅值相似度的CU快速划分方法.首先,计算当前编码单元下层的四个子编码单元的平均梯度幅值相似度偏差(M GM SD),根据该信息来确定当前编码单元是否进行四叉树划分或不划分.其次,当不满足四叉树划分和不划分的条件时,通过遍历得到三叉树划分和二叉树划分的子块像素方差的方差,根据该信息来选择二叉树和三叉树中最佳的划分方式.在全I帧条件下,本文方法与VTM7.0(VVC Test Model 7.0)标准模型相比,编码时
其他文献
针对当前SSD算法低层特征图语义信息不足导致存在小目标漏检以及误检的问题,提出一种基于分段反卷积改进SSD的目标检测算法SD-SSD(Segmented Deconvolution-Single Shot M ulti Box Detector).根据SSD模型低层特征图语义信息提取不足,高层特征图边缘信息丢失过多,本文重新设计了融合结构,不仅降低了计算过程中的参数数量,而且丰富了各个特征图的细节
在机器人迅速发展的时代,人机协作型机器人安全性问题是人们关注的焦点.机器人逆运动学的建模与求解是决定其安全性的必要因素之一.旋量法是一种机器人逆运动学建模的常用方法,它可以解决传统D-H参数法的奇异性问题.然而,在建模过程中,旋量法会因人为因素或软件系统缺陷导致模型出现漏洞,从而威胁操作人员安全.因此,本文在旋量高阶逻辑定理证明库的基础上,实现了指数积和Paden-Kahan子问题(subprob-R)等数学理论的高阶逻辑表达,在交互式定理证明器HOLLight中对6R型协作型机器人逆运动学建模与求解过程
序列推荐在构建现代推荐系统中起着十分重要的作用,如何对序列进行建模是当前学术界研究的热点.针对传统推荐算法难以表示用户兴趣的动态变化,基于循环神经网络的推荐方法在捕捉复杂的序列关系方面的不足,提出了一种嵌入压缩-激励模块的改进时序卷积网络来提取序列特征.模型利用扩张卷积增大感受野,捕获更多的序列关系,利用残差连接减小反向传播过程中的梯度消失问题.通过对用户和项目特征的融合,模型可以综合考虑用户的短期和长期偏好进行个性化推荐.在两个数据集上的实验结果表明,本文提出的算法要优于基线算法,取得较好的推荐效果.
为解决当前太赫兹频段下的极化转换器件带宽窄和带内转换率低的问题,设计了一款基于超表面的高效率太赫兹线极化转换器.通过在两端增加一对谐振枝节的方法,将原本的单谐振频
提高行人再辨识任务识别性能的重要途径之一是通过卷积神经网络将全局特征和局部特征相结合,而现有的基于部件的方法主要是通过定位具有特定语义的区域来学习局部表示,这不仅增加了学习的难度,而且对于具有较大差异的场景难以学习到稳定的特征表示.本文提出了批次分块遮挡网络(Batch Part-mask Network,BPNet),该网络由全局特征分支和特征删除分支组成,并以Res Net-50作为主干网络.
手势识别研究与人机交互和谐发展具有密不可分的联系,因此具有重要研究意义.针对传统手势检测算法空间不变性较弱,手势识别效率较低等问题,本文提出基于改进YOLOV3网络与贝叶斯分类器相结合的手势识别深度学习模型.首先采用空间变换网络对YOLOV3网络进行改进,处理手势信息,提取关键性手势特征,解决了数据易受影响问题并且增强了网络不变性;然后将网络提取出的特征进行降维操作,减少冗余信息;再通过贝叶斯分类
针对现有大多数基于暗原色先验图像去雾算法对天空区域的透射率和整体大气光值估计不精确的问题,提高去雾算法的性能,本文提出了结合天空分割和条件生成对抗网络的单幅图像去雾方法.首先,提出一种可行的基于阈值的天空分割算法把图像分割为天空区域和非天空区域,并在天空区域中估计出大气光值;然后,利用改进的条件生成对抗网络实现对透射率的精确估计;最后,根据大气散射模型恢复无雾图像并对其进行对比度增强处理.实验表明
该文针对不规则干扰导致文字图片字符识别率下降的问题,提出一种基于U型网络框架和部分卷积运算的文字图片修复模型.首先,针对常见字体的干扰问题,通过图像融合建立干扰文字图像数据库,在逐像素损失、感知损失和全变分损失的共同约束下,根据已有笔画细节对污损部分进行修复,并对污损汉字的字体形状和笔画走向的细部特征进行复原;其次,使用光学字符识别接口对修复前后图片进行测试并计算识别率;最后,将该文算法初步应用于
高效视频编码(HEVC)在H.264之上实现了显著的编码性能.但是却以明显的编码复杂度为代价获得了性能上的提高,其中,由于对所有可能的编码单元(CU)进行基于率失真优化的遍历搜索
颅内出血区域结构不明确且存在伪影和其他脑组织等噪声对分割任务造成了极大的影响.针对这类问题,为提高颅内出血分割的性能,本文提出了融合密集连接与注意机制的颅内出血分割方法,在全卷积网络的编码器部分引入密集连接块进行颅内出血特征提取,但从编码器中提取的特征并非所有都可用于分割,为此,本文将融合空间和通道注意力的注意力机制融入网络架构中,在空间和通道方面对颅内出血特征进行加权,捕获丰富的上下文关系,获取