论文部分内容阅读
摘要: 用树状分子及炭黑纳米复合材料修饰玻碳电极,并对六价铬Cr(VI)进行电化学测定.采用X射线光电子能谱(XPS)、循环伏安法(CV)、交流阻抗法(EIS)、方波溶出伏安法(SWSV)等方法对修饰电极进行了表征.研究发现多种其他离子如Ni2+、Co2+、Pb2+、Cu2+、Cd2+、NO-3、SO42-、Cl-等对六价铬离子的测定没有明显干扰,且Cr(VI)的还原峰电流与Cr(VI)的物质的量浓度在4~60 nmol/L和0.06~500 μmol/L范围内呈线性关系,检测限达1 nmol/L.该法具有简便快速,选择性好,线性范围宽,灵敏度高等优点.
关键词: 六价铬Cr(VI); 炭黑; 树状分子; 电化学; 修饰电极
中图分类号: O 657.1 文献标志码: A 文章编号: 10005137(2017)02027805
Abstract: This study described a simple and rapid method for the electrochemical determination of Cr (VI) by using polyamidoamine and carbon black composite nano materials modified glassy carbon electrode (GCE) (written as PAMAM/CB/GCE).PAMAM/CB/GCE was characterized by XPS,CV,EIS,and SWSV.It was found that many other ions such as Ni2+,Co2+,Pb2+,Cu2+,Cd2+,NO-3,SO42-,and Cl- had no influence on Cr (VI) determination.Under the optimal conditions,the reduction current of Cr (VI) increased linearly with increased mole concentration of Cr (VI) in the range of 4~60 nmol/L and 0.06~500 μmol/L.The detection limit was 1 nmol/L (based on S /N = 3).The present method has some advantages such as simplicity,rapidness,good selectivity,wide linear range,and high sensitivity.
Key words: Cr (VI); carbon black; polyamidoamine; electrochemical; modified electrode
0 引 言
铬在自然界中分布广泛,在环境中多以Cr(III)、Cr(VI)存在.鉻及其化合物广泛应用于皮革加工、电镀、涂料、木材防腐、金属加工、冶金、肥料、印染等工业生产中,是我国无机化工的主要产品之一.工业生产中排放的含铬废水、废气和废渣,因为在环境中不能自行分解,可能会导致周边的土壤、居民用水、河水、地下水等铬的含量的增高[1-2].铬(Cr)是人体必要的微量元素,其毒性与价态和浓度有关.Cr(III)在一定的浓度范围内是对人体有益的,但当其浓度过高时也会对生命机体产生危害.Cr(VI)是一种重要的环境污染物,其毒性比Cr(III)高100 倍,超过10 μg/mLCr(VI)对植物、水生生物及人体均表现出毒害作用.Cr(VI)是一种吸入性和吞入性致毒物,皮肤接触后可能导致过敏或皮肤癌.同时,Cr(VI)很容易被人体吸收,可以经过消化道、呼吸道和皮肤黏膜进入人体,可能致畸、致癌、致突变.鉴于其严重危害性,对于废水中Cr(VI)的检测及监控势在必行[3-6].
目前,已报道多种对Cr(VI)的检测方法,例如火焰原子吸收光谱法[7]、等离子体-质谱法[8]、光电化学(压电)方法[9]、电感耦合等离子体动态反应细胞同位素稀释质谱法和高效液相色谱联用技术[10]、比率计和视觉荧光方法[11]、化学发光法[12]和荧光光度法[13]等检测方法,但上述方法存在操作难度高、样品处理复杂、检测成本高等问题.相比之下,电化学方法具有分析速度快,选择性好,灵敏度高,仪器简单等优点,因此近年来用电化学分析方法检测Cr(VI)备受关注[14-23].
本工作旨在构建一种树状分子及炭黑纳米复合材料修饰玻碳电极的新型传感器,并应用于Cr(VI)的检测.炭黑纳米材料因具有优良的电化学性能,大的比表面积被作为修饰材料的首选[24].树状分子其独特的分子结构可以有效地防止炭黑纳米粒子的团聚进而大幅度提高了修饰电极的活性表面积,同时,它高度有序的氨基官能团能和金属离子形成配位键,对金属离子起到预富集作用[25].
本文作者构建了一种树状分子及炭黑纳米复合材料修饰玻碳电极的新型传感器,并具有检测限低,线性范围宽等突出优点,实现了对Cr(VI)高效、快速、灵敏的检测,有望用于实际应用.
1 实验部分
1.1 主要试剂
炭黑纳米粒子(N234,CABOT公司);NN二甲基甲酰胺(DMF)(上海化学试剂公司);1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐(EDC)(上海化学试剂公司);2.5代聚酰胺树状分子(PAMAM,上海师范大学无机化学课题组提供);0.1 mol/L硝酸;0.1 mol/L磷酸缓冲溶液PBS(pH=4.5);0.1 mol/L醋酸缓冲溶液HAcNaAc(pH=4.5);1.0 mmol/L铁氰化钾溶液(含0.1 mol/L硝酸钾);1.0 mmol/L铁氰化钾/亚铁氰化钾溶液(1∶1)(含0.1 mol/L氯化钾);重铬酸钾(购于上海试剂二厂).所有试剂均为分析纯,所有溶液均用Milli—Q 18.2 MQ超纯水配制. 1.2 主要仪器
CHI660B型电化学工作站(上海辰华仪器有限公司);JBZ12H型磁力搅拌器(美国Veeco Nano III,a Multimode);CQ50型超声波清洗仪(上海必能信超声有限公司);pHS一3C型数字化pH计(上海洛奇特电子设备有限公司);X射线光电子能谱仪(日本岛津公司,Axis 165型);S4800场发射扫描电子显微镜(FE.SEM,Hita.chi);三电极系统:玻碳(GC)电极为工作电极,铂丝电极为对电极,饱和甘汞(SC)电极为参比电极.
1.3 修饰电极的制备
将裸GC分别在含有粒径为0.3和0.05 μm Al2O3粉末径的麂皮上进行抛光,轨迹呈“8”字型,抛光后在超纯水中对其进行超声,时间约为2 min,除去表面粘附的Al2O3粉末,然后再用超纯水充分冲洗,并在室温下干燥.在铁氰化钾溶液中进行循环伏安测试,直到性能优良为止.
将1 mg炭黑纳米粒子(CB)加入1 mL NN二甲基甲酰胺(DMF)中,超声充分分散2 h后,制得质量浓度为1 mg/mL的炭黑纳米分散液.首先移取6 μL上述已分散好的炭黑纳米分散液滴加在已打磨处理好的玻碳电极上,室温下晾干,制得炭黑修饰玻碳电极(CB/GC电极).
将50 μL物质的量浓度为0.1 mol/L的EDC 溶液加入到1 mL PAMAM (物质的量浓度为10 μmol/L)的溶液中,室温下超声2 h后,取40 μL混合溶液于小试管内,将其倒置于已修饰有干燥的CB/GC电极上4 h,然后用蒸馏水充分冲洗,除去电极表面多余的混合溶液室温下晾干,制得PAMAM和CB修饰玻碳电极(PAMAM/CB/GC电极).
2 结果与讨论
2.1 修饰电极的表征
2.1.1 修饰电极的XPS表征
层层修饰过程用XPS表征,XPS试验采用日本岛津公司,Axis 165型X射线光电子能谱仪,辐射能量Al Ka(1 486.6 eV),X射線能量为2 000 eV.
炭黑上有一定量的羧基官能团,因此,树状分子上的氨基可与炭黑上的羧基进行交联[26].从图1,可以发现:1)CB/GC的XPS N1s谱在401.7 eV处出现一个很弱的吸收峰;2)PAMAM/CB/GC在398.9 eV出现吸收强峰,说明PAMAM已共价键合到CB表面,PAMAM含有大量N元素引起吸收峰的增强.吸收峰发生位移归因于N元素所处化学环境不同.
2.1.2 电极层层修饰的循环伏安(CV)图及电化学阻抗表征
图2分别表明裸GC、CB/GC、PAMAM/CB/GC电极作为工作电极在浓度为1 mmol/L铁氰化钾溶液中的循环伏安响应.图2(a)为裸玻碳(GC)电极在1 mmol/L K3Fe(CN)6溶液中的一对氧化还原峰,修饰CB后该氧化还原峰电流变大,这是由于CB/GC电极增大了电极的有效面积,能够促进电子转移,当树状分子进一步修饰工作电极时,氧化还原峰电流进一步增加.
图3为裸GC、CB/GC、PAMAM/CB/GC电极分别作为工作电极在铁氰化钾/亚铁氰化钾溶液的Nyquist图谱.从图3中可以看出裸GC电极的半圆直径较大,说明使用裸玻碳电极为工作电极测定时有一定的电子转移电阻.裸GC和CB/GC电极的Nyquist图谱相比,表明修饰CB后的工作电极大大减小了电极表面的电阻.PAMAM/CB/GC电极证明电子转移电阻进一步减小,这可能是由于树状分子的空腔结构对Fe(CN)63-的预富集作用所致[25].
2.2 Cr(VI)离子在修饰电极上的电化学行为
图4显示了裸玻碳和其他不同修饰电极在以0.1 mol/LHNO3为底液的10 μmol/LK2Cr2O7溶液中的循环伏安(CV)图.裸GC电极没有明显的Cr(VI)还原峰,电极上修饰了CB后(曲线b),在0.468 V出现明显的Cr(VI)的还原峰,这是因为CB存在能有效地增加电极的活性表面积,提高工作电极的导电能力,进而增大了Cr(VI)的还原电流.而当电极上修饰了PAMAM后(c曲线),进一步增大了还原峰电流,这是由于树枝状分子高度有序的氨基官能团能和金属离子配位键,对Cr(VI)粒子有一定的预富集作用.[25]
2.3 不同底液的选择
图5为同一根PAMAM/CB/GC电极分别在含有10 μmol/L K2Cr2O7的PBS缓冲液(pH=4.5),HACNaAC缓冲液(pH=4.5),和0.1 mol/LHNO3溶液中所测的CV图,由图5可知,修饰电极在0.1 mol/LHNO3溶液中的还原峰电流比在pH=4.5的PBS缓冲液及在pH=4.5的HAcNaAc缓冲液中的明显增加,峰电位明显整移,因此本实验使用0.1 mol/LHNO3作为底液.
2.4 峰电流与扫速的关系
图6为同一修饰电极在不同扫速下对含有10 μmol/L K2Cr2O7溶液中的CV图.由图6可知在一定的扫速范围内,随着扫速的增大,还原峰电位不移动,峰电流不断地增大,且与扫速成正比,说明该电极反应过程是受吸附控制.
2.5 线性范围、检测限及干扰
图7(a)为PAMAM/CB/GC电极对不同浓度的K2Cr2O7的方波溶出伏安(SWV)曲线,测定条件为:灵敏度1 μA/V,滤波参数50HZ,放大倍数l,初始电位0.8 V,电积电位-0.1 V,电位增量0.004 V,方波频率15 Hz,方波幅度0.025 V,电积时间100 s,平衡时间2 s.图7(b)为Cr(VI)的还原峰电流与K2Cr2O7的物质的量浓度在4~60 nmol/L和0.06~500 μmol/L范围内呈线性关系.其线性回归方程分别为I=6.90lgC+61.76和I=9.78lgC+82.89,其相关系数分别为R=0.979和R=0.985,检测限可达1 nmol/L(S/N=3). 通过以0.1 mol/LHNO3为底液的10 μmol/LK2Cr2O7溶液中加入不同的物质,用PAMAM/CB/GC电极研究了Cr2O72-在检测过程中可能出现的干扰.结果表明,100 μmol/L(即重铬酸钾浓度的10倍)的Ni2+,Co2+,Pb2+,Cu2+,Cd2+,NO-3,SO42-,Cl-均不干扰PAMAM/CB/GC电极对Cr(VI)的测定.说明该电极选择性良好.
3 小 结
提出并建立了一种简单、可靠的电化学测定Cr(VI)的方法.基于树状分子和炭黑纳米复合材料修饰电极,对Cr(VI)的还原有良好的电化学响应.相较于现有的Cr(VI)检测方法.本实验所用的方法更加简单、灵敏度高、线性范围宽、响应迅速、成本低廉.
参考文献:
[1] 李培中,吕晓健,宋云,等.某电镀厂六价铬污染土壤还原稳定化试剂筛选与过程监测研究 [J].环境科学,2017,1:368-373.
Li P Z,Lv X J,Song Y,et al.Screen the reduction/stabilization reagent of Cr(VI) contaminated soil in a planting siteand reaction process monitoring research [J].Environmental Science,2017,1:368-373.
[2] 李德玢,仲维娜.土壤中铬的危害及分析方法的改进 [J].中国科技博览,2014,27:76.
[3] 陈颖,杨静翎,凌敏.含铬(Cr6+)废水处理技术综述 [J].科技与企业,2014,22:146-149.
[4] 谢文强.六价铬对人体急性与慢性危害探究 [J].资源节约与环保,2016,7:131-135.
[5] Breda N,Janez S C C,Bojana Z.Cytotoxic and genotoxic potential of Cr(VI),Cr(III)nitrate and Cr(III)EDTA complex in human hepatoma (HepG2) cells [J].Chemosphere,2016,154:124-131.
[6] Krishnani K K,Mulchandani A.Hexavalent chromium removal mechanism using conducting polymers [J].Journal of Hazardous Materials,2013,(99-106):252-253.
[7] Erkan Y,Soylak M.Ultrasound assisteddeep eutectic solvent based on emulsification liquid phase microextraction combined with microsample injection flame atomic absorption spectrometry for valence speciation of chromium(III/VI) in environmental samples [J].Talanta,2016,160:680-685.
[8] Djerahov L,Vasileva P,Karadjov I,et al.Selfstanding chitosan film loaded with silver nanoparticles as a tool for selective determination of Cr(VI) by ICPMS [J].Microchemical Journal,2016,129:23-28.
[9] Fang T,Yang X M,Gong J M,et al.Ultrasensitive photoelectrochemical determination of chromium(VI) in water samples by ionimprinted/formate anionincorporated graphitic carbon nitride nanostructured hybrid [J].Journal of Hazardous Materials,2016,312:106-113.
[10] Markiewicz B,Komorowicz I,Barakiewicz D.Accurate quantification of total chromium and its speciation form Cr(VI) in water by ICPDRCIDMS and HPLC/ICPDRCIDMS [J].Talanta,2016,152:489-497.
[11] 楊传孝,余梦雯,孙向英.甲醛功能化聚乙烯亚胺-罗丹明B酰肼比率及可视化荧光测定Cr(Ⅵ) [J].高等学校化学学报,2016,37(5):852-859.
Yang C X,Yu M W,Sun X Y.Determination of Cr(Ⅵ) by ratiometric and visual fluorescence method based on formaldehyde functionalized polyethyleneiminerhodamine B hydrazide system [J].Chemical Journal of Chinese Universities,2016,37(5):852-859.
[12] Hosseini M S,Hosseini N,et al.Synthesis of 2Mercaptonicotinic acidcapped CdSe quantum dots and its application to spectrofluorometric determination of Cr(VI) in water samples [J].Journal of Fluorescence,2016,26(3):867-874. [13] Zhang J R,Luo H Q,Li N B.Fluorescent silver nanoclusters for ultrasensitive determination of chromium(VI) in aqueous solution [J].Journal of Hazardous Materials,2016,304:66-72.
[14] Carrington N A,Yong L,Xue Z L.Electrochemical deposition of solgel films for enhanced chromium(VI) determination in aqueous solutions [J].Analytica Chimica Acta,2006,572(1):17-24.
[15] Bergamini M F,Santos D P,Zanoni M V B.Development of a voltammetric sensor for chromium(VI) determination in wastewater sample [J].Sensors and Actuators B:Chemical,2007,123(2):902-908.
[16] Zazoua A,Morakchi K,Boubellout R,et al.Electrochemical characterization of an EIS sensor functionalized with a TOPO doped polymeric layer for Cr(VI) detection [J].IRBM,2008,29:187-191.
[17] Xu H,Jin L T,et al.Electrochemical synthesis of silver nanoparticlescoated gold nanoporous film electrode and its application to amperometric detection for trace Cr(VI) [J].Science China Chemistry,2011,54(6):1004-1010.
[18] Jin W,Wu G S,Chen A C.Sensitive and selective electrochemical detection of chromium(VI) based on gold nanoparticle decorated titania nanotube arrays [J].Analyst,2014,139(1):235-241.
[19] Miscoriaa S A,Negri M,Martín Negri R.Screenprinted electrodes for electroanalytical sensing of chromium VI in strong acid media [J].Sensors and Actuators B:Chemical,2014,195:294-302.
[20] Teixeira P R S,Marreiro A S N,Carla Eiras,et al.Layerbylayer hybrid films of phosphate cellulose and electroactive polymer as chromium (VI) sensors [J].Journal of Solid State Electrochemistry,2015,19(7):2129-2139.
[21] Oliveira Farias E A,Santos M C,Eiras Carla.LayerbyLayer films based on biopolymers extracted from red seaweeds and polyaniline for applications in electrochemical sensors of chromium VI [J].Materials Science and Engineering B,2015,200:9-21.
[22] Moakhar R S,Dolati A,Ghorbani M,et al.A novel screenprinted TiO2 photoelectrochemical sensor for direct determination and reduction of hexavalent chromium [J].Electrochemistry Communications,2015,61:110-113.
[23] 杨帅,汤婉鑫,祝宁宁.PdNPs/MWNTs修饰玻碳電极的制备及其对六价铬的电化学测定 [J].上海师范大学学报(自然科学版),2014,43(6):594-599.
Yang S,Tang W X,Zhu N N.Preparation of palladium nanoparticles and carboxylated MWNTsmodified glassy carbon electrode and its application for theelectrochemical determination of Cr (VI) [J].Journal of Shanghai Normal University(Natural Sciences),2014,43(6):594-599.
[24] Hou C,Tang W X,Zhu N N,et al.A novel and sensitive electrochemical sensor for bisphenol A determination based on carbon black supporting ferroferric oxide nanoparticles [J].ElectrochimicaActa,2014,144:324-331.
[25] Ke D D,Yuan L,Han S M,et al.Facile fabrication of poly(amidoamine) (PAMAM) dendrimersencapsulated AgCo bimetallic nanoparticles for highly efficient dehydrogenation of ammonia borane [J].International Journal of Hydrogen Energy,2016,41(4):2564-2574.
[26] Hermanson G.Bioconjugate Techniques [M].New York:Academic Press,1996.
(责任编辑:郁 慧)
关键词: 六价铬Cr(VI); 炭黑; 树状分子; 电化学; 修饰电极
中图分类号: O 657.1 文献标志码: A 文章编号: 10005137(2017)02027805
Abstract: This study described a simple and rapid method for the electrochemical determination of Cr (VI) by using polyamidoamine and carbon black composite nano materials modified glassy carbon electrode (GCE) (written as PAMAM/CB/GCE).PAMAM/CB/GCE was characterized by XPS,CV,EIS,and SWSV.It was found that many other ions such as Ni2+,Co2+,Pb2+,Cu2+,Cd2+,NO-3,SO42-,and Cl- had no influence on Cr (VI) determination.Under the optimal conditions,the reduction current of Cr (VI) increased linearly with increased mole concentration of Cr (VI) in the range of 4~60 nmol/L and 0.06~500 μmol/L.The detection limit was 1 nmol/L (based on S /N = 3).The present method has some advantages such as simplicity,rapidness,good selectivity,wide linear range,and high sensitivity.
Key words: Cr (VI); carbon black; polyamidoamine; electrochemical; modified electrode
0 引 言
铬在自然界中分布广泛,在环境中多以Cr(III)、Cr(VI)存在.鉻及其化合物广泛应用于皮革加工、电镀、涂料、木材防腐、金属加工、冶金、肥料、印染等工业生产中,是我国无机化工的主要产品之一.工业生产中排放的含铬废水、废气和废渣,因为在环境中不能自行分解,可能会导致周边的土壤、居民用水、河水、地下水等铬的含量的增高[1-2].铬(Cr)是人体必要的微量元素,其毒性与价态和浓度有关.Cr(III)在一定的浓度范围内是对人体有益的,但当其浓度过高时也会对生命机体产生危害.Cr(VI)是一种重要的环境污染物,其毒性比Cr(III)高100 倍,超过10 μg/mLCr(VI)对植物、水生生物及人体均表现出毒害作用.Cr(VI)是一种吸入性和吞入性致毒物,皮肤接触后可能导致过敏或皮肤癌.同时,Cr(VI)很容易被人体吸收,可以经过消化道、呼吸道和皮肤黏膜进入人体,可能致畸、致癌、致突变.鉴于其严重危害性,对于废水中Cr(VI)的检测及监控势在必行[3-6].
目前,已报道多种对Cr(VI)的检测方法,例如火焰原子吸收光谱法[7]、等离子体-质谱法[8]、光电化学(压电)方法[9]、电感耦合等离子体动态反应细胞同位素稀释质谱法和高效液相色谱联用技术[10]、比率计和视觉荧光方法[11]、化学发光法[12]和荧光光度法[13]等检测方法,但上述方法存在操作难度高、样品处理复杂、检测成本高等问题.相比之下,电化学方法具有分析速度快,选择性好,灵敏度高,仪器简单等优点,因此近年来用电化学分析方法检测Cr(VI)备受关注[14-23].
本工作旨在构建一种树状分子及炭黑纳米复合材料修饰玻碳电极的新型传感器,并应用于Cr(VI)的检测.炭黑纳米材料因具有优良的电化学性能,大的比表面积被作为修饰材料的首选[24].树状分子其独特的分子结构可以有效地防止炭黑纳米粒子的团聚进而大幅度提高了修饰电极的活性表面积,同时,它高度有序的氨基官能团能和金属离子形成配位键,对金属离子起到预富集作用[25].
本文作者构建了一种树状分子及炭黑纳米复合材料修饰玻碳电极的新型传感器,并具有检测限低,线性范围宽等突出优点,实现了对Cr(VI)高效、快速、灵敏的检测,有望用于实际应用.
1 实验部分
1.1 主要试剂
炭黑纳米粒子(N234,CABOT公司);NN二甲基甲酰胺(DMF)(上海化学试剂公司);1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐(EDC)(上海化学试剂公司);2.5代聚酰胺树状分子(PAMAM,上海师范大学无机化学课题组提供);0.1 mol/L硝酸;0.1 mol/L磷酸缓冲溶液PBS(pH=4.5);0.1 mol/L醋酸缓冲溶液HAcNaAc(pH=4.5);1.0 mmol/L铁氰化钾溶液(含0.1 mol/L硝酸钾);1.0 mmol/L铁氰化钾/亚铁氰化钾溶液(1∶1)(含0.1 mol/L氯化钾);重铬酸钾(购于上海试剂二厂).所有试剂均为分析纯,所有溶液均用Milli—Q 18.2 MQ超纯水配制. 1.2 主要仪器
CHI660B型电化学工作站(上海辰华仪器有限公司);JBZ12H型磁力搅拌器(美国Veeco Nano III,a Multimode);CQ50型超声波清洗仪(上海必能信超声有限公司);pHS一3C型数字化pH计(上海洛奇特电子设备有限公司);X射线光电子能谱仪(日本岛津公司,Axis 165型);S4800场发射扫描电子显微镜(FE.SEM,Hita.chi);三电极系统:玻碳(GC)电极为工作电极,铂丝电极为对电极,饱和甘汞(SC)电极为参比电极.
1.3 修饰电极的制备
将裸GC分别在含有粒径为0.3和0.05 μm Al2O3粉末径的麂皮上进行抛光,轨迹呈“8”字型,抛光后在超纯水中对其进行超声,时间约为2 min,除去表面粘附的Al2O3粉末,然后再用超纯水充分冲洗,并在室温下干燥.在铁氰化钾溶液中进行循环伏安测试,直到性能优良为止.
将1 mg炭黑纳米粒子(CB)加入1 mL NN二甲基甲酰胺(DMF)中,超声充分分散2 h后,制得质量浓度为1 mg/mL的炭黑纳米分散液.首先移取6 μL上述已分散好的炭黑纳米分散液滴加在已打磨处理好的玻碳电极上,室温下晾干,制得炭黑修饰玻碳电极(CB/GC电极).
将50 μL物质的量浓度为0.1 mol/L的EDC 溶液加入到1 mL PAMAM (物质的量浓度为10 μmol/L)的溶液中,室温下超声2 h后,取40 μL混合溶液于小试管内,将其倒置于已修饰有干燥的CB/GC电极上4 h,然后用蒸馏水充分冲洗,除去电极表面多余的混合溶液室温下晾干,制得PAMAM和CB修饰玻碳电极(PAMAM/CB/GC电极).
2 结果与讨论
2.1 修饰电极的表征
2.1.1 修饰电极的XPS表征
层层修饰过程用XPS表征,XPS试验采用日本岛津公司,Axis 165型X射线光电子能谱仪,辐射能量Al Ka(1 486.6 eV),X射線能量为2 000 eV.
炭黑上有一定量的羧基官能团,因此,树状分子上的氨基可与炭黑上的羧基进行交联[26].从图1,可以发现:1)CB/GC的XPS N1s谱在401.7 eV处出现一个很弱的吸收峰;2)PAMAM/CB/GC在398.9 eV出现吸收强峰,说明PAMAM已共价键合到CB表面,PAMAM含有大量N元素引起吸收峰的增强.吸收峰发生位移归因于N元素所处化学环境不同.
2.1.2 电极层层修饰的循环伏安(CV)图及电化学阻抗表征
图2分别表明裸GC、CB/GC、PAMAM/CB/GC电极作为工作电极在浓度为1 mmol/L铁氰化钾溶液中的循环伏安响应.图2(a)为裸玻碳(GC)电极在1 mmol/L K3Fe(CN)6溶液中的一对氧化还原峰,修饰CB后该氧化还原峰电流变大,这是由于CB/GC电极增大了电极的有效面积,能够促进电子转移,当树状分子进一步修饰工作电极时,氧化还原峰电流进一步增加.
图3为裸GC、CB/GC、PAMAM/CB/GC电极分别作为工作电极在铁氰化钾/亚铁氰化钾溶液的Nyquist图谱.从图3中可以看出裸GC电极的半圆直径较大,说明使用裸玻碳电极为工作电极测定时有一定的电子转移电阻.裸GC和CB/GC电极的Nyquist图谱相比,表明修饰CB后的工作电极大大减小了电极表面的电阻.PAMAM/CB/GC电极证明电子转移电阻进一步减小,这可能是由于树状分子的空腔结构对Fe(CN)63-的预富集作用所致[25].
2.2 Cr(VI)离子在修饰电极上的电化学行为
图4显示了裸玻碳和其他不同修饰电极在以0.1 mol/LHNO3为底液的10 μmol/LK2Cr2O7溶液中的循环伏安(CV)图.裸GC电极没有明显的Cr(VI)还原峰,电极上修饰了CB后(曲线b),在0.468 V出现明显的Cr(VI)的还原峰,这是因为CB存在能有效地增加电极的活性表面积,提高工作电极的导电能力,进而增大了Cr(VI)的还原电流.而当电极上修饰了PAMAM后(c曲线),进一步增大了还原峰电流,这是由于树枝状分子高度有序的氨基官能团能和金属离子配位键,对Cr(VI)粒子有一定的预富集作用.[25]
2.3 不同底液的选择
图5为同一根PAMAM/CB/GC电极分别在含有10 μmol/L K2Cr2O7的PBS缓冲液(pH=4.5),HACNaAC缓冲液(pH=4.5),和0.1 mol/LHNO3溶液中所测的CV图,由图5可知,修饰电极在0.1 mol/LHNO3溶液中的还原峰电流比在pH=4.5的PBS缓冲液及在pH=4.5的HAcNaAc缓冲液中的明显增加,峰电位明显整移,因此本实验使用0.1 mol/LHNO3作为底液.
2.4 峰电流与扫速的关系
图6为同一修饰电极在不同扫速下对含有10 μmol/L K2Cr2O7溶液中的CV图.由图6可知在一定的扫速范围内,随着扫速的增大,还原峰电位不移动,峰电流不断地增大,且与扫速成正比,说明该电极反应过程是受吸附控制.
2.5 线性范围、检测限及干扰
图7(a)为PAMAM/CB/GC电极对不同浓度的K2Cr2O7的方波溶出伏安(SWV)曲线,测定条件为:灵敏度1 μA/V,滤波参数50HZ,放大倍数l,初始电位0.8 V,电积电位-0.1 V,电位增量0.004 V,方波频率15 Hz,方波幅度0.025 V,电积时间100 s,平衡时间2 s.图7(b)为Cr(VI)的还原峰电流与K2Cr2O7的物质的量浓度在4~60 nmol/L和0.06~500 μmol/L范围内呈线性关系.其线性回归方程分别为I=6.90lgC+61.76和I=9.78lgC+82.89,其相关系数分别为R=0.979和R=0.985,检测限可达1 nmol/L(S/N=3). 通过以0.1 mol/LHNO3为底液的10 μmol/LK2Cr2O7溶液中加入不同的物质,用PAMAM/CB/GC电极研究了Cr2O72-在检测过程中可能出现的干扰.结果表明,100 μmol/L(即重铬酸钾浓度的10倍)的Ni2+,Co2+,Pb2+,Cu2+,Cd2+,NO-3,SO42-,Cl-均不干扰PAMAM/CB/GC电极对Cr(VI)的测定.说明该电极选择性良好.
3 小 结
提出并建立了一种简单、可靠的电化学测定Cr(VI)的方法.基于树状分子和炭黑纳米复合材料修饰电极,对Cr(VI)的还原有良好的电化学响应.相较于现有的Cr(VI)检测方法.本实验所用的方法更加简单、灵敏度高、线性范围宽、响应迅速、成本低廉.
参考文献:
[1] 李培中,吕晓健,宋云,等.某电镀厂六价铬污染土壤还原稳定化试剂筛选与过程监测研究 [J].环境科学,2017,1:368-373.
Li P Z,Lv X J,Song Y,et al.Screen the reduction/stabilization reagent of Cr(VI) contaminated soil in a planting siteand reaction process monitoring research [J].Environmental Science,2017,1:368-373.
[2] 李德玢,仲维娜.土壤中铬的危害及分析方法的改进 [J].中国科技博览,2014,27:76.
[3] 陈颖,杨静翎,凌敏.含铬(Cr6+)废水处理技术综述 [J].科技与企业,2014,22:146-149.
[4] 谢文强.六价铬对人体急性与慢性危害探究 [J].资源节约与环保,2016,7:131-135.
[5] Breda N,Janez S C C,Bojana Z.Cytotoxic and genotoxic potential of Cr(VI),Cr(III)nitrate and Cr(III)EDTA complex in human hepatoma (HepG2) cells [J].Chemosphere,2016,154:124-131.
[6] Krishnani K K,Mulchandani A.Hexavalent chromium removal mechanism using conducting polymers [J].Journal of Hazardous Materials,2013,(99-106):252-253.
[7] Erkan Y,Soylak M.Ultrasound assisteddeep eutectic solvent based on emulsification liquid phase microextraction combined with microsample injection flame atomic absorption spectrometry for valence speciation of chromium(III/VI) in environmental samples [J].Talanta,2016,160:680-685.
[8] Djerahov L,Vasileva P,Karadjov I,et al.Selfstanding chitosan film loaded with silver nanoparticles as a tool for selective determination of Cr(VI) by ICPMS [J].Microchemical Journal,2016,129:23-28.
[9] Fang T,Yang X M,Gong J M,et al.Ultrasensitive photoelectrochemical determination of chromium(VI) in water samples by ionimprinted/formate anionincorporated graphitic carbon nitride nanostructured hybrid [J].Journal of Hazardous Materials,2016,312:106-113.
[10] Markiewicz B,Komorowicz I,Barakiewicz D.Accurate quantification of total chromium and its speciation form Cr(VI) in water by ICPDRCIDMS and HPLC/ICPDRCIDMS [J].Talanta,2016,152:489-497.
[11] 楊传孝,余梦雯,孙向英.甲醛功能化聚乙烯亚胺-罗丹明B酰肼比率及可视化荧光测定Cr(Ⅵ) [J].高等学校化学学报,2016,37(5):852-859.
Yang C X,Yu M W,Sun X Y.Determination of Cr(Ⅵ) by ratiometric and visual fluorescence method based on formaldehyde functionalized polyethyleneiminerhodamine B hydrazide system [J].Chemical Journal of Chinese Universities,2016,37(5):852-859.
[12] Hosseini M S,Hosseini N,et al.Synthesis of 2Mercaptonicotinic acidcapped CdSe quantum dots and its application to spectrofluorometric determination of Cr(VI) in water samples [J].Journal of Fluorescence,2016,26(3):867-874. [13] Zhang J R,Luo H Q,Li N B.Fluorescent silver nanoclusters for ultrasensitive determination of chromium(VI) in aqueous solution [J].Journal of Hazardous Materials,2016,304:66-72.
[14] Carrington N A,Yong L,Xue Z L.Electrochemical deposition of solgel films for enhanced chromium(VI) determination in aqueous solutions [J].Analytica Chimica Acta,2006,572(1):17-24.
[15] Bergamini M F,Santos D P,Zanoni M V B.Development of a voltammetric sensor for chromium(VI) determination in wastewater sample [J].Sensors and Actuators B:Chemical,2007,123(2):902-908.
[16] Zazoua A,Morakchi K,Boubellout R,et al.Electrochemical characterization of an EIS sensor functionalized with a TOPO doped polymeric layer for Cr(VI) detection [J].IRBM,2008,29:187-191.
[17] Xu H,Jin L T,et al.Electrochemical synthesis of silver nanoparticlescoated gold nanoporous film electrode and its application to amperometric detection for trace Cr(VI) [J].Science China Chemistry,2011,54(6):1004-1010.
[18] Jin W,Wu G S,Chen A C.Sensitive and selective electrochemical detection of chromium(VI) based on gold nanoparticle decorated titania nanotube arrays [J].Analyst,2014,139(1):235-241.
[19] Miscoriaa S A,Negri M,Martín Negri R.Screenprinted electrodes for electroanalytical sensing of chromium VI in strong acid media [J].Sensors and Actuators B:Chemical,2014,195:294-302.
[20] Teixeira P R S,Marreiro A S N,Carla Eiras,et al.Layerbylayer hybrid films of phosphate cellulose and electroactive polymer as chromium (VI) sensors [J].Journal of Solid State Electrochemistry,2015,19(7):2129-2139.
[21] Oliveira Farias E A,Santos M C,Eiras Carla.LayerbyLayer films based on biopolymers extracted from red seaweeds and polyaniline for applications in electrochemical sensors of chromium VI [J].Materials Science and Engineering B,2015,200:9-21.
[22] Moakhar R S,Dolati A,Ghorbani M,et al.A novel screenprinted TiO2 photoelectrochemical sensor for direct determination and reduction of hexavalent chromium [J].Electrochemistry Communications,2015,61:110-113.
[23] 杨帅,汤婉鑫,祝宁宁.PdNPs/MWNTs修饰玻碳電极的制备及其对六价铬的电化学测定 [J].上海师范大学学报(自然科学版),2014,43(6):594-599.
Yang S,Tang W X,Zhu N N.Preparation of palladium nanoparticles and carboxylated MWNTsmodified glassy carbon electrode and its application for theelectrochemical determination of Cr (VI) [J].Journal of Shanghai Normal University(Natural Sciences),2014,43(6):594-599.
[24] Hou C,Tang W X,Zhu N N,et al.A novel and sensitive electrochemical sensor for bisphenol A determination based on carbon black supporting ferroferric oxide nanoparticles [J].ElectrochimicaActa,2014,144:324-331.
[25] Ke D D,Yuan L,Han S M,et al.Facile fabrication of poly(amidoamine) (PAMAM) dendrimersencapsulated AgCo bimetallic nanoparticles for highly efficient dehydrogenation of ammonia borane [J].International Journal of Hydrogen Energy,2016,41(4):2564-2574.
[26] Hermanson G.Bioconjugate Techniques [M].New York:Academic Press,1996.
(责任编辑:郁 慧)