论文部分内容阅读
森林是生态系统的重要组成部分,准确估算森林碳储量及其分布对于评价森林生态系统的功能具有重要意义。以龙泉市为研究区,利用2009年99个森林资源清查样地数据和同年度 Landsat TM 影像数据,采用高斯序列协同仿真(SGCS)与BP神经网络方法(BPNN)分别模拟森林地上部分碳密度及其分布,并进行了对比分析。随机将样本数据分成70个建模样本和29个检验样本。通过模型检验,BP神经网络预测值与实测值的相关性达到0.67,相对均方根误差为0.63,空间仿真方法预测值与实测值的相关性为0.68,相对均方根误差