论文部分内容阅读
为了进一步研究移动测量系统的数据处理问题,该文根据点云的基本特征,归纳了由7个特征构成的点云原始特征向量,在此基础上,结合语义环境构建了由17个特征构成的点云扩展特征向量,并采用支持向量机模型对车载LiDAR点云进行行道树点云识别的一系列实验。实验中采用粒子群优化算法和遗传算法对支持向量机进行参数寻优;采用不同特征向量和不同数目样本对点云进行学习和目标识别;分析了特征向量的学习曲线和识别精度。实验结果表明,支持向量机模型能够在行道树点云识别中取得较高的精度。