论文部分内容阅读
给定一组观察数据,估计其潜在的概率密度函数是统计学中的一项基本任务,被称为密度估计问题.随着数据收集技术的发展,出现了大量的实时流式数据,其特点是数据量大,数据产生速度快,并且数据的潜在分布也可能随着时间而发生变化,对这类数据分布的估计也成为亟待解决的问题.然而,在传统的密度估计算法中,参数式算法因为有较强的模型假设导致其表达能力有限,非参数式算法虽然具有更好的表达能力,但其计算复杂度通常很高.因此,它们都无法很好地应用于这种流式数据的场景.通过分析基于竞争学习的学习过程,提出了一种在线密度估计算法来完成