论文部分内容阅读
采煤机摇臂齿轮箱是采煤机的故障多发区,为了提高采煤机摇臂运行可靠性,减少故障发生率,对其进行故障诊断研究显得尤为重要。研究一种基于多尺度熵(Multi-scale Entropy, MSE)和BP(Back-Propagation)神经网络的故障诊断方法,利用多尺度熵算法具有的抗干扰和抗噪能力,来对齿轮振动信号进行复杂度分析,以各尺度样本熵值作为故障特征信息对齿轮的故障类型进行诊断识别。通过实验数据分析得到,所提出的基于多尺度熵-BP神经网络的故障诊断方法可以准确区分多种齿轮故障,对于四种齿轮状态的识别率