论文部分内容阅读
针对电力线巡线异物检测使用的传统卷积神经网络空间辨识度较差、训练样本需求过多的问题,提出一种改进胶囊网络模型。使用数据灰度化、三维块匹配滤波算法预处理巡线数据集。提出自适应贡献池化降低数据信息丢失量,异物数据深度信息提取单元提取主要特征来滤除冗余信息、减少数据数量以改善模型性能,改进异物识别主胶囊层和动态路由结构以适应电力线巡线异物检测的二分类情况。对自适应贡献池化和最大池化,无池化、传统结构胶囊网络和改进胶囊网络,改进胶囊网络和AlexNet、GoogLeNet分别进行异物识别对比实验和改进胶囊网