论文部分内容阅读
机载LiDAR点云的分类是利用其进行城市场景三维重建的关键步骤之一。为充分利用现有的图像领域性能较好的深度学习网络模型,提高点云分类精度,并降低训练时间和对训练样本数量的要求,本文提出一种基于深度残差网络的机载LiDAR点云分类方法。首先提取归一化高程、表面变化率、强度和归一化植被指数4种具有较高区分度的点云低层次特征;然后通过设置不同的邻域大小和视角,利用所提出的点云特征图生成策略,得到多尺度和多视角点云特征图;再将点云特征图输入到预训练的深度残差网络,提取多尺度和多视角深层次特征;最后构建并训练