论文部分内容阅读
通过修改光子映射算法的实现过程,使得该算法能够通过CUDA完全运行在最新的GPU上,从而能够充分利用GPU强大的并行计算能力,加速光子映射的实现。光子映射在CUDA中的实现主要通过两个方面来完成:构建光子图和估计辐射能。同时为了提高对光子图中的光子信息的查找速度,采用了kd-tree结构来存储光子信息,使得可以通过KNN(K-Nearest Neighbor)快速搜索光子图。在所测试环境中,渲染速度是CPU中的近10倍。