论文部分内容阅读
The vortex domains, structural properties and ferroelectric polarization in Y1-xInxMn O3 with 0 B x B 0.6have been extensively investigated in well-characterized samples. X-ray diffraction measurements demonstrated that the lattice parameters change continuously following the substitution of In for Y. Measurements of magnetic susceptibilities revealed that In substitution could visibly affect the magnetic transition and low-temperature magnetic properties. Transmission electron microscopy study showed that In substitution could result in notable decrease of the size of ferroelectric vortex domains. Cs-corrected scanning transmission electron microscopy observations and our careful analysis on atomic-poling configurations demonstrate that the ferroelectric polarizations of Y1-xInxMn O3 are suppressed with the increase of In content.
The vortex domains, structural properties and ferroelectric polarization in Y1-xInxMn O3 with 0 B × B 0.6have been extensively investigated in the well-characterized samples. X-ray diffraction measurements demonstrated that the lattice parameters change continuously following the substitution of In for Y. Measurements of magnetic susceptibilities revealed that In substitution could visibly affect the magnetic transition and low-temperature magnetic properties. Transmission electron microscopy study showed that In substitution could result in notable decrease of the size of ferroelectric vortex domains. Cs-corrected scanning transmission electron microscopy observations and our careful analysis on atomic-poling configurations demonstrate that the ferroelectric polarizations of Y1-xInxMn O3 are suppressed with the increase of In content.