【摘 要】
:
模糊聚类方法可以更有效地对复杂数据集进行分析,由于模糊聚类算法的种类繁多且聚类结果会随着输入的聚类个数的不同而改变,使得模糊聚类算法产生的结果不准确,因此,要获得准确的聚类结果必须确定模糊聚类个数k。目前已有的研究主要是利用多种模糊聚类有效性指标来确定最优聚类个数k,但是诸如SSD,PBM等模糊聚类指标会随着划分的聚类个数k的增加而单调递减,导致聚类个数k不准确。为此,文中提出了一种结合多目标优化算法的模糊聚类有效性指标(A Validity Index of Fuzzy Clustering Combi
【机 构】
:
南京航空航天大学计算机科学与技术学院,中国航空无线电电子研究院软件部
论文部分内容阅读
模糊聚类方法可以更有效地对复杂数据集进行分析,由于模糊聚类算法的种类繁多且聚类结果会随着输入的聚类个数的不同而改变,使得模糊聚类算法产生的结果不准确,因此,要获得准确的聚类结果必须确定模糊聚类个数k。目前已有的研究主要是利用多种模糊聚类有效性指标来确定最优聚类个数k,但是诸如SSD,PBM等模糊聚类指标会随着划分的聚类个数k的增加而单调递减,导致聚类个数k不准确。为此,文中提出了一种结合多目标优化算法的模糊聚类有效性指标(A Validity Index of Fuzzy Clustering Combi
其他文献
资源描述框架(Resource Description Framework,RDF)是W3C推荐的一种元数据模型和信息描述规范,已被广泛地应用于各个领域。为了跟踪RDF数据随时间的变化,将时态信息引入RDF的框架中,随着时态RDF数据的快速增长,对时态RDF数据的有效管理变得十分必要,构建合理的索引机制能够实现对数据的高效存储和查询。文中提出了一种时态RDF数据模型,给出了具体的一维编码方案,实现了简单地表示时态信息,并以较低的开销扩展现有的RDF数据模型。在此基础上,提出了基于邻域的二级索引结构。首先利
蒙特卡罗树搜索(Monte Carlo Tree Search,MCTS)在低维离散控制任务中取得了巨大的成功。然而,在现实生活中许多任务需要在连续动作空间进行行动规划。由于连续行动空间涉及的行动集过大,蒙特卡罗树搜索很难在有限的时间内从中筛选出最佳的行动。作为蒙特卡罗树搜索的一个变种,KR-UCT(Kernel Regression UCT)算法通过核函数泛化局部信息的方式提高了蒙特卡罗树搜索在低维连续动作空间的模拟效率。但是在与环境交互的过程中,为了找出最佳的行动,KR-UCT在每一步都需要从头进行大
针对粒子群算法在求解复杂多峰函数时存在早熟、易陷入局部最优、全局收敛性能差等缺陷,考虑种群结构、多模式学习和个体间博弈等因素,提出了具有博弈概率选择的多子群粒子群算法。该算法从改善群体多样性、提升个体搜索能力的角度出发,构建了动态多种群结构,并针对每个子群构建不同的学习策略(极端学习、复合学习、邻域学习和随机学习),子群间进行最优信息共享,形成异构多子群的多源学习方式;将进化博弈思想引入群体搜索过程中,个体通过收益矩阵和扎根概率进行策略概率选择,进入适合个体能力提升的子群进行学习。基于12个标准测试函数,
为科技论文生成自动摘要,这能够帮助作者更快撰写摘要,是自动文摘的研究内容之一。相比于常见的新闻文档,科技论文具有文档结构性强、逻辑关系明确等特点。目前,主流的编码-解码的生成式文摘模型主要考虑文档的序列化信息,很少深入探究文档的篇章结构信息。为此,文中针对科技论文的特点,提出了一种基于“单词-章节-文档”层次结构的自动摘要模型,利用单词与章节的关联作用增强文本结构的层次性和层级之间的交互性,从而筛选出科技论文的关键信息。除此之外,该模型还扩充了一个上下文门控单元,旨在更新优化上下文向量,从而能更全面地捕获
随着医学信息化的推进,医学领域已经积累了海量的非结构化文本数据,如何从这些医学文本中挖掘出有价值的信息,是医学行业和自然语言处理领域的研究热点。随着深度学习的发展,深度神经网络被逐步应用到关系抽取任务中,其中“recurrent+CNN”网络框架成为了医学实体关系抽取任务中的主流模型。但由于医学文本存在实体分布密度较高、实体之间的关系交错互联等问题,使得“recurrent+CNN”网络框架无法深入挖掘医学文本语句的语义特征。基于此,在“recurrent+CNN”网络框架基础之上,提出一种融合多通道自注
文中提出了一种以用户为中心的位置隐私博弈机制,目的是在满足LBS服务质量的基础上生成对应的保护策略,并减小计算规模和效用损失。该机制以Stackelberg博弈模型为基础,用户在请求LBS服务时,采用位置模糊机制对自身位置进行扰动后发送给LBS服务器,使攻击者难以推测自己的真实位置;攻击者根据已知的一部分背景知识,对匿名区域内用户的保护策略进行推断并调整攻击方式,最小化用户隐私水平。为了解决传统线性规划解法在现实场景中计算复杂度过高、实用性低的问题,文中采用生成对抗网络参与保护策略的生成,并尽可能降低效用
为了优化虚拟工业制造的控制策略,采用狼群优化的卷积神经网络算法进行虚拟工业制造控制研究。首先根据虚拟工业制造任务和资源数据,建立任务-资源列表,并结合单位矩阵对任务-资源列表进行稀疏化,形成虚拟制造单元;接着建立卷积神经网络虚拟制造控制模型,并采用狼群算法对权重和偏置进行优化;最后以所有任务的平均制造时间为目标函数,对虚拟制造单元进行训练优化。船舶主机虚拟制造实验证明,相比于常用的控制算法,通过合理设置卷积核池化尺寸的狼群优化卷积神经网络算法能够获得平均制造时间的最优解。
由于存在大量服从高斯分布的样本数据,采用高斯混合模型(Gaussian Mixture Models,GMM)对这些样本数据进行聚类分析,可以得到比较准确的聚类结果。通常采用EM算法(Expectation Maximization Algorithm)对GMM的参数进行迭代式估计。但传统EM算法存在两点不足:对初始聚类中心的取值比较敏感;迭代式参数估计的迭代终止条件是相邻两次估计参数的距离小于给定的阈值,这不能保证算法收敛于参数的最优值。为了弥补上述不足,提出采用密度峰值聚类(Density Peaks
材质识别旨在识别自然材质图像中的主要对象及其所属材料类别。针对材质图像数据集通常数据量少、人工标注局部纹理区域困难所导致的材质识别准确率低的问题,提出了一种基于注意力机制和深度卷积神经网络的材质识别方法,该方法的核心是材质识别深度卷积神经网络(MaterialNet)。MaterialNet利用深度残差网络对图像进行特征提取,采用所提出的级联空洞空间金字塔池化的方式引入注意力机制,使网络可以通过端
随着智能信息技术的发展,知识图谱已被广泛应用于智能搜索等各个领域。知识图谱中的信息一般采取RDF(S)的数据模型来表示。知识图谱的构建需要从大量的数据源抽取信息,而数据库是不可忽视的重要数据源。近几年,对象关系数据库得到了广泛的应用,且其中存储着丰富的语义信息,而基于对象关系数据库自动构建RDF(S)的研究却较少。因此,文中给出了对象关系数据库与RDF(S)的形式化定义,根据形式化定义将对象关系数据库中的语义信息进行抽取,提出了构建RDF(S)数据的映射规则。该映射规则不仅考虑了数据库的面向对象的语义,还