论文部分内容阅读
In this manuscript, an easy method of anchoring Au nanoparticles onto a polypropylene(PP) membrane to prepare a composite Au-PP membrane with catalytic activity was demonstrated. The surface of the PP membrane was first modified with a primary amine by mussel-inspired dopamine polymerization. Then, the modified PP membrane was used to reduce chloroauric acid to anchor Au nanoparticles onto the surface, forming a Au-PP membrane. The surface morphology and composition of the modified PP membrane were characterized with SEM, ATR-FTIR and XPS. The catalytic activity of the Au-PP membrane was also evaluated by the degradation of a model dye solution of methylene blue. The fabricated membrane shows excellent catalytic performance, and the catalytic activity can be effectively regenerated.
In this manuscript, an easy method of anchoring Au nanoparticles onto a polypropylene (PP) membrane to prepare a composite Au-PP membrane with catalytic activity was demonstrated. The surface of the PP membrane was first modified with a primary amine by mussel- inspired dopamine The modified morphology of PP membrane was characterized with SEM, ATR-FTIR and XPS. The catalytic activity of the Au-PP membrane was also evaluated by the degradation of a model dye solution of methylene blue. The fabricated membrane shows excellent catalytic performance, and the catalytic activity can be effectively regenerated.