论文部分内容阅读
为实现对船舶行为的深入挖掘,建立船舶行为模型,根据模型需求引入语义模型和动态贝叶斯网络,形成基于语义的船舶行为动态推理机制。使用语义网络实现复杂态势下船舶行为领域知识的形式化描述与共享;将语义网络结构转换为动态贝叶斯网络结构并采用水上交通大数据进行参数学习;使用动态贝叶斯网络推理不确定性信息,挖掘深层次的船舶行为和事件。基于长江渡船靠离泊行为的实例验证表明:该船舶行为动态推理模型能准确地识别并预测船舶的动态行为,实现船舶行为的辨识与预警。