论文部分内容阅读
This paper presents the results of a laboratory flume experimental study on the interaction of bank vegetation and gravel bed on the flow velocity(primarily on the location of the maximum velocity,Umax) and the Reynolds stress distributions. The results reveal that the dip of the maximum velocity below the water surface is up to 35% of flow depth and the difference between Umax and the velocity at the water surface is considerable in the presence of vegetation on the walls. The zone of the log-law varies from y/h=2 up to 15 percent of flow depth and it does not depend on distance from the wall. Deviation of the velocity profile in the outer layer over a gravel bed with vegetation cover on the walls is much larger than the case of flow over a gravel bed without vegetation cover on the walls. The presence of vegetation on the walls changes uniform flow to non-uniform flow. This fact can be explained by considering the nonlinear Reynolds stress distribution and location of maximum velocity in each profile at different distances across the flume. The Reynolds stress distributions at the distance 0.02 m from the wall have negative values and away from the wall,they change the sign taking positive values with specific convex form with apex in higher location. Average of von Karman constant κ for this study is equal to 0.16. Based on κ=0.16,the methods of Clauser and the Reynolds stress are compatible for determination of shear velocity.
This paper presents the results of a laboratory flume experimental study on the interaction of bank vegetation and gravel bed on the flow velocity (in on the location of the maximum velocity, Umax) and the Reynolds stress distributions. The results reveal that the dip of the maximum velocity below the water surface is up to 35% of flow depth and the difference between Umax and the velocity at the water surface is considerable in the presence of vegetation on the walls. The zone of the log-law varies from y / h = 2 up to 15 percent of flow depth and it does not depend on distance from the wall. Deviation of the velocity profile in the outer layer over a gravel bed with vegetation cover on the walls is much larger than the case of flow over a gravel bed without vegetation cover on the walls. The presence of vegetation on the walls changes uniform flow to non-uniform flow. This fact can be explained by considering the nonlinear Reynolds stress distribution and location of maximum velocit y in each profile at different distances across the flume. The Reynolds stress distributions at the distance 0.02 m from the wall have negative values and away from the wall, they change the sign taking positive values with specific convex form with apex in higher location. Average of von Karman constant κ for this study is equal to 0.16. Based on κ = 0.16, the methods of Clauser and the Reynolds stress are compatible for determination of shear velocity.