论文部分内容阅读
针对多尺度Retinex算法在图像增强过程中存在的算法运算量大的问题,提出了将RBF神经网络作为高反差图像增强算法。该算法从训练数据集中获取以3×3为邻域像素的特征向量以及目标图像对应的特征向量,通过聚类算法来确定网络隐含层的中心向量和扩展常数,采用梯度下降法使网络快速收敛得到最优解。利用RBF神经网络建立高反差图像与增强算法之间的非线性映射关系,根据神经网络参数进行快速图像处理,从而实现图像实时处理。仿真实验结果表明,与传统的基于Retinex理论算法相比,基于神经网络的高反差图像增强算法,不仅能