论文部分内容阅读
针对先验信息不确定条件下的贝叶斯网络学习问题,提出了一种非确定先验结构信息贝叶斯网络的结构学习方法。主要在以下几个方面开展了工作:提出了一种贝叶斯网络结构的不确定先验信息表示方法;改进了MDL测度,提出了SMDL测度,使之能在学习过程中考虑先验信息的不确定性;基于模拟退火算法,对问题进行求解。最后通过实验对算法的可行性进行了验证。