论文部分内容阅读
针对基本遗传算法全局搜索能力差和收敛速度慢,且在求解多峰函数时仅能得到部分最优解的缺点,提出一种基于梯度优化的自适应小生境算法。该算法利用当前种群适应度和种群代数来设计交叉算子和变异算子,有效地保持了种群的多样性,改善全局搜索能力,加快了收敛速度,应用改进的梯度优化算子保证进化向最优解方向靠近,提高了计算峰值的精确度。对Shubert函数的仿真试验证明,该算法能改善全局搜索能力,加快算法收敛速度并提高计算精度。