论文部分内容阅读
The myocardial viability after myocardial infarction was evaluated by intravenous myocardial contrast echocardiography. Intravenous real-time myocardial contrast echocardiography was performed on 18 patients with myocardial infarction before coronary revascularization. Follow-up echocardiography was performed 3 months after coronary revascularization. Segmental wall motion was assessed using 18-segment LV model and classified as normal, hypokinesis, akinesis and dyskinesis. Viable myocardium was defined by evident improvement of segmental wall motion 3 months after coronary revascularization. Myocardial perfusion was assessed by visual interpretation and divided into 3 conditions: homogeneous opacification; partial or reduced opaciflcation or subendocardial contrast defect; contrast defect. The former two conditions were used as the standard to define the viable myocardium. The results showed that 109 abnormal wall motion segments were detected among 18 patients with myocardial infarction, including 47 segments of hypokinesis, 56 segments of akinesis and 6 segments of dyskinesis. The wall motion of 2 segments with hypokinesis before coronary revascularization which showed homogeneous opacification, 14 of 24 segments with hypokinese and 20 of 24 segments with akinese before coronary revascularization which showed partial or reduced opaciflcation or subendocardial contrast defect was improved 3 months after coronary revascularization. In our study, the sensitivity and specificity of evaluation of myocardial viability after myocardial infarction by intravenous real-time myocardial contrast echocardiography were 94.7% and 78.9%, respectively. It was concluded that intravenous real-time myocardial contrast echocardiography could accurately evaluate myocardial viability after myocardial infarction.