论文部分内容阅读
针对现有视频二值分割算法分割性能过低的问题,提出了一种基于GPU的视频实时二值概率分割算法。该算法通过规范化视频帧中每个像素属于前景类和背景类的概率大小,实现了基于二次马尔可夫测量场(QMMF)模型的视频实时二值概率分割。首先分别为不同场景的视频帧提出了两种概率模型,即静态背景概率模型(SBLM)和动态背景概率模型(UBLM);然后,通过光照矫正算法颜色转换、阴影抑制算法阴影检测以及伪装检测算法来计算每个像素属于背景类的概率值;最后,通过Gauss-Seidel模型迭代计算出了使能量函数取得最小值的