论文部分内容阅读
Combustion characteristics of methane jet flames in an industrial burner working in high temperature combustion regime were investigated experimentally and numerically to clarify the effects of swirling high temperature air on combustion.Speziale-Sarkar-Gatski(SSG) Reynolds stress model,Eddy-Dissipation Model(EDM),Discrete Ordinates Method(DTM) combined with Weighted-Sum-of-Grey Gases Model(WSGG) were employed for the numerical simulation.Both Thermal-NO and Prompt-NO mechanism were considered to evaluate the NO formation.Temperature distribution,NO emissions by experiment and computation in swirling and non-swirling patterns show combustion characteristics of methane jet flames are totally different.Non-swirling high temperature air made high NO formation while significant NO prohibition were achieved by swirling high temperature air.Furthermore,velocity fields,dimensionless major species mole fraction distributions and Thermal-NO molar reaction rate profiles by computation interpret an inner exhaust gas recirculation formed in the combustion zone in swirling case.
Combustion characteristics of methane jet flames in an industrial burner working in high temperature combustion regime were investigated experimentally and numerically to clarify the effects of swirling high temperature air on combustion. Speziale-Sarkar-Gatski (SSG) Reynolds stress model, Eddy-Dissipation Model EDM), Discrete Ordinates Method (DTM) combined with Weighted-Sum-of-Gray Gases Model (WSGG) were employed for the numerical simulation. Both Thermal-NO and Prompt-NO mechanism were considered to evaluate the NO formation. NO emissions by experiment and computation in swirling and non-swirling patterns show combustion characteristics of methane jet flames are totally different. Non-swirling high temperature air made high NO formation while significant NO prohibition were achieved by swirling high temperature air. Ferrthermore, velocity fields , dimensionless major species mole fraction distributions and Thermal-NO molar reaction rate profiles by computation interpret an inner exhaust gas recirculation formed in the combustion zone in swirling case.