应用于LTE的高效率高线性功率放大器

来源 :微电子学 | 被引量 : 0次 | 上传用户:zangye
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
基于2 μm InGaP/GaAs HBT工艺,设计并实现了一种用于LTE终端的高效率、高线性功率放大器.采用模拟预失真和相位补偿器抑制幅度失真和相位失真,实现了高线性度;利用二次谐波终端电容改变电路工作模式,减少时域电压电流的重叠损耗功率,提高了功率附加效率.结果 表明,在3.4V电源电压、2.8V偏置电压时,在工作频带815~915 MHz范围内,该功率放大器的增益大于29.5 dB,输入回波损耗小于-13.2 dB;在10 MHz LTE输入调制信号、28 dBm回退输出功率时,功率附加效率为39%~41%,第一相邻信道泄漏比ACLR1小于-38.1 dBc,第二相邻信道泄漏比ACLR2小于-44.8 dBc.
其他文献
近年来随着现代社会的发展,消费铸造产品大量丰富,插画作为紧密联系包装与铸造产品的设计表现形式,其独有的艺术表现和深刻内涵意义正日益受到大众的关注,使它在商品的购买中占据了重要的地位.具有现代表现特征的欧美复古插画不仅通过凸显铸造产品的视觉信息内容影响到铸造产品本身的销售,而且对于企业深层次的品牌文化与企业精神都有着很强的作用,让品牌深入人心.另一方面,欧美复古插画使得艺术文化自然地灌注到了铸造产品中去,形成了一种审美引导并引发了具有时代特征的美育过程.在这个最具有大众化的设计领域中,对于艺术审美的引导和教
期刊
近年来,全球科技水平得到了进一步的发展与开拓,各类新兴技术与新兴科技产品层出不穷,这有效地改善了人们生活的方方面面,使生活中的各个细节都得到了充分改良与优化,也让人们正式进入新一轮的技术热潮,即电子信息化世界.在当下这种科技发展背景下,新兴的科技产品不但对人们的日常生活各方面产生了深远影响,也对包括工业设备在内的其他各领域发展得到推动,创造出了极大的物质财富与精神财富.铸造行业作为工业社会中的中流砥柱型产业,在近几十年的发展中已然发生了翻天覆地的变化,其相较于传统生产时期,融入了大量自动化产品、信息化技术
期刊
设计了一种8位2.16 GS/s四通道、时间交织逐次逼近型模数转换器(TI-SAR ADC).单通道SAR ADC采用数据环、异步时钟环的双环结构实现高速工作.采用带复位开关的动态比较器缩短量化时间,提高比较精度.结合反向单调切换时序,逐步增大共模电压,提升量化速度.基于55 nm CMOS工艺设计,后仿真结果表明,在1.2V电源电压下,该TI-SAR ADC消耗42.6 mA电流,在奈奎斯特输入频率下,FOM值为212 fJ/(conv.step),信噪失真比(SNDR)为42.7 dB,无杂散动态范围
半导体科技是未来信息和通信技术发展的主要推动力,模拟电子技术是半导体科技的不可或缺的组成部分.文章阐述了受未来信息系统更大处理能力、更高传输能力、更低延时感知等需求的拉动,模拟电子技术在智能化感知和执行、新计算处理架构、高能量效率、整体协同开发平台等方面的几大主要技术发展趋势.讨论了模拟电子技术在晶体管、电路、模拟学习架构、先进工艺技术等基础层面以及通信领域中的重要研究方向.该综述研究显示了未来十年模拟电子关键技术的发展轮廓.
峰均比的持续增大使得无线通讯终端需要更高功率、更高效率、更高频率的功率放大器,而现有模拟功放作为基站全数字化最后一道屏障,其效率和输出功率不足以满足现在无线通讯的需求.GaN数字功率放大器作为一种工作在开关状态的数字功放,具备高输出功率、高速、高效率的优势,是实现全数字化基站的关键之一.GaN数字功放在高峰均比输入时仍能以较高效率工作,从而弥补模拟功放在高峰均比输入时效率下降的不足.文章简述了GaN数字功率放大器的工作原理,总结了近期国内外技术进展及其面临的挑战,阐述了未来GaN数字功率放大器的发展和优化
基于180 nm BCD工艺,在传统带隙基准结构的基础上,设计了一种新型的无运放高性能带隙基准电压源.该带隙基准通过共源共栅电流镜技术和负反馈网络来调节参考电压,消除了运放失调电压的不利影响.电路在Cadence Spectre下仿真.仿真结果表明,设计的输出电压为1.228 V;在-40℃至125℃的温度范围内,温度系数为1.47×10-6/℃;在1 kHz时的PSRR约为--86 dB;线性调整率为6.5×10-5/V.
通过分析我国核心元器件长期“跟仿”存在的问题,提出自主定义元器件的概念,给出了核心元器件自主定义的分类方法.并结合元器件自主定义分类,给出了实施途径及关键技术,分析了不同等级核心元器件自主定义实现案例,最后给出了开展核心元器件自主定义工作相关建议.
基于一种新型低压降、高输出电阻镜像电流源,设计了一种高增益、高功耗效率全差分运算跨导放大器(OTA).该OTA基于0.18 μm CMOS工艺设计,电源电压为1.8V.在保证1.8VPP差分输出电压摆幅的前提下,获得了较高的直流电压增益.采用NMOS管差分对作为输入的套筒式结构.结果 表明,在2.3 mA偏置电流、2 pF负载电容下,该OTA具有119 dB的开环直流增益、526 MHz的增益带宽积和高达77 °的相位裕度.额外加入增益提高技术后,该OTA的开环直流增益可提高到153 dB.
基于AWSC 2μm的HBT工艺,设计了一种用于5G通信N77频段(3.3~4.2 GHz)的功率放大器.采用变压器匹配的方式,显著提高了功率放大器的增益、输出功率和功率附加效率,解决了放大电路级间匹配较难的问题.仿真和测试结果表明,在N77工作频段内,该功率放大器的增益为36~38 dBm,输出功率1 dB压缩点为37 dBm,输出功率1 dB压缩点处的功率附加效率为49.3%,输出功率28.5 dBm处的功率附加效率为16.5%、相邻频道泄漏比为-38.2 dBc.
介绍了一种应用于高速逐次逼近型模数转换器的新型高能效电容开关方案.基于2bit/cycle结构,采用两个分裂电容阵列作为数模转换器.通过单边充电操作,在减小电容阵列动态功耗和总面积的同时,提高了电容的建立速度.在最后一个量化周期中,只在电容阵列的单边引入共模电压基准,并只用一个比较器参与量化,在获得更高精度的同时,进一步降低了电容阵列的动态功耗.相比传统1bit/cycle电容开关方案,该新型电容开关方案在提升系统量化速度约2倍的同时,降低了电容阵列平均功耗83%,减小了电容总面积50%.相比其他2bit