论文部分内容阅读
城市交通工具的合理调度能够有效缓解日益严峻的交通压力,出租车作为公共出行的交通工具满足了大量的出行需求。蚁群算法(ACO)作为仿生算法的代表,根据蚂蚁个体产生的信息素,通过不同策略和信息素更新等操作,逐步接近最优解,适合解决城市交通资源路径规划问题。文章给出一种改进的蚁群算法进行出租车调度,在不同时间段内,对非热点区域向热点区域以及热点区域向非热点区域转移进行研究,根据信息素差异化特征,首先建立了时间区域优化算法和区域调度模型,通过对数据样本的训练得到不同情况下的转移概率和行驶里程,从而确定最优的抑制因子