基于蚁群优化算法的出租车调度方法研究

来源 :长江信息通信 | 被引量 : 0次 | 上传用户:Kingss
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
城市交通工具的合理调度能够有效缓解日益严峻的交通压力,出租车作为公共出行的交通工具满足了大量的出行需求。蚁群算法(ACO)作为仿生算法的代表,根据蚂蚁个体产生的信息素,通过不同策略和信息素更新等操作,逐步接近最优解,适合解决城市交通资源路径规划问题。文章给出一种改进的蚁群算法进行出租车调度,在不同时间段内,对非热点区域向热点区域以及热点区域向非热点区域转移进行研究,根据信息素差异化特征,首先建立了时间区域优化算法和区域调度模型,通过对数据样本的训练得到不同情况下的转移概率和行驶里程,从而确定最优的抑制因子
其他文献
从2010年1月1日起,国际柔道联合会实行修改后的新版柔道竞赛规则,为了增加运动员的主动进攻性和比赛的观赏性,同时也对运动员的身体素质、心理素质和技术、战术水平提出新的
近年来,随着神经网络理论的拓展,神经网络模型在图像处理领域得到了广泛的应用。利用上下文聚合网络实现双边滤波器算子逼近,分析其图像去噪性能。结果表明,逼近双边滤波算子的上下文聚合网络能够实现图像降噪,改善图像质量,且处理效果优于传统的双边滤波器。此外,对比分析了上下文聚合网络和去噪卷积神经网络的图像去噪性能。相比于去噪卷积神经网络,逼近双边滤波运算的上下文聚合网络处理多幅图像的速度更快,时效性更好,
介绍了我国建筑节能政策,并针对新疆的建筑节能工作现状分析了开展节能工作的前景,提出确保节能建筑工程的质量是建筑节能工作顺利开展的前提.