论文部分内容阅读
多分类器组合能够在一定程度上弥补单个分类器的缺陷,因此它在模式识别中得到了广泛应用。深入调研国内外联机手写识别技术的研究动态,结合维吾尔文字母的独特书写风格,研究了基于多分类器集成的维吾尔语联机手写字母识别。利用5种不同的特征提取方法构造了5个独立的维吾尔语字母分类识别器,采用了等权投票和不等权投票等两种策略将5种维吾尔语字母分类识别器进行了有效组合。其中,单分类器采用了基于动态时间弯折(DTW)匹配距离的最近邻分类方法。实验结果表明,提出的集成策略的识别率明显高于单分类器的识别率,而且为特征的综合