论文部分内容阅读
小规模数据人脸识别的难点在于数据量少而变化多,直接用深度神经网络进行训练易出现过拟合现象.针对此问题,本文提出了基于联合损失函数的小规模数据人脸识别算法,即利用联合损失函数,在基于Softmax损失函数的大规模公开人脸数据集上得到的预训练模型上重新训练.该方法既能充分使用模型参数,也能够提高模型的特征表征能力.除此之外,本文中还使用了传统特征后处理方法进行对比评估,证明了该方法在小规模人脸数据集上的有效性.实验表明,本文方法能大幅度提高模型在学校新生人脸数据集的检索精度.