Exploring high-voltage fluorinated carbonate electrolytes for LiNi0.5Mn1.5O4 cathode in Li-ion batte

来源 :能源化学 | 被引量 : 0次 | 上传用户:xiaok131
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Ethyl-(2,2,2-trifluoroethyl) carbonate (ETFEC) is investigated as a solvent component in high-voltage electrolytes for LiNi0.5Mn1.5O4 (LNMO).Our results show that the self-discharge behavior and the high temperature cycle performance can be significantly improved by the addition of 10% ETFEC into the normal carbonate electrolytes,e.g.,the capacity retention improved from 65.3% to 77.1% after 200 cycles at 60℃.The main reason can be ascribed to the high stability of ETFEC which prevents large oxidation of the electrolyte on the cathode surface.In addition,we also explore the feasibility of electrolytes using single fluoriated-solvents with and without additives.Our results show that the cycle performance of LNMO material can be greatly improved in 1 M LiPF6+ pure ETFEC-solvent system with 2 wt% ethylene carbonate (EC) or ethylene sulfate (DTD).The capacity retention of the LNMO materials is 93% after 300 cycles,even better than that of carbonate-based electrolytes.It is shown that the additives are oxidized on the surface of LNMO particles and contribute to the formation of cathode/electrolyte interphase (CEI) films.This composite CEI film plays a crucial role in suppressing the serious decomposition of the electrolyte at high voltage.
其他文献
This work presents an enhanced hydrometallurgical process for recycling lithium ion batteries.First,end-of-life batteries were processed in a physical pre-treatment plant to obtain a representative electrode material.The resulting leachate was purified fo
An optimized graphene/RuO2/S composite is prepared by hydrothermal growth of RuO2 particles on graphene oxide sheets as the positive electrode for rechargeable lithium-sulfur batteries.The electrode with 6.1 wt% RuO2 nanocrystals and a high sulfur content
Developing bifunctional catalysts that increase both the OER and ORR kinetics and transport reactants with high efficiency is desirable.Herein,micro-meso-macroporous FeCo-N-C-X (denoted as “M-FeCo-N-C-X”,X represents Fe/Co molar ratio in bimetallic zeolit
The directly selective hydrogenolysis of xylitol to ethylene glycol (EG) and 1,2-propylene glycol (1,2-PDO) was performed on Cu–Ni–ZrO2 catalysts prepared by a co-precipitation method. Upon optimizing the reaction conditions (518 K, 4.0 Mpa H 2 and 3 h),
Porous carbon materials with developed porosity,high surface area and good thermal-and chemical-resistance are advantageous for gas adsorption and separation.However,most carbon adsorbents are in powder form which exhibit high pressure drop when deployed
The main challenges in development of traditional liquid lithium-sulfur batteries are the shuttle effect at the cathode caused by the polysulfide and the safety concern at the Li metal anode arose from the dendrite formation.All-solid-state lithium-sulfur
Research on asymmetric A-D-A structured non-fullerene acceptors has lagged far behind the development of symmetric counterpart.In this contribution,by simply replacing one sulfur atom in indacenodithiophene unit with a selenium atom,an asymmetric building
Rational design of cost-effective high-performance electrocatalysts for oxygen evolution reaction (OER) is of great significance for electrochemical water splitting.Herein,we adopt a nitrogen doping method to fabricate self-supported N-doped CoO nanowire
Dry-spun Carbon Nanotube (CNT) fibers were surface-modified by atmospheric pressure oxygen plasma functionalization using a well controlled and continuous process.The fibers were characterized by scanning electron microscopy (SEM),Raman spectroscopy,and X
Non-precious metal nitrogen-doped carbonaceous materials have attracted tremendous attention in the field of electrochemical energy storage and conversion.Herein,we report the designed synthesis of a novel series of Co-N-C nanocomposites and their evaluat