论文部分内容阅读
1.问题试题(2013年湖南卷理科第10题)设a,b,c∈R,且满足a+2b+3c=6,则a^2+4b^2+9c^2的最小值为______.2.问题解决视角1柯西不等式法解法1:由柯西不等式得(a+2b+3c)^2=(1×a+1×2b+1×3c)^2≤(1^2+1^2+1^2)(a^2+4b^2+9c^2)=3(a^2+4b^2+9c^2),即a^2+4b^2+9c^2≥12,当且仅当a=2,b=1,c=2/3时等号成立.