论文部分内容阅读
由S变换推导出的时序分解算法可以将一个任意的初始时间序列变换成一组突出时间序列局部信息的二维时间序列,该时序分解的可逆性表明了它可用于时域信号的滤波与特征提取。希尔伯特变换可有效地对时域信号进行解调,其实质是对原始信号作一次特殊的滤波。综合前述两种变换的优点,提出了结合希尔伯特变换及时序分解的弱故障特征信号提取算法,采用数值仿真实验及齿轮故障诊断进行了验证,结果表明,此种方法能有效地提取混在强背景信号中的弱故障特征信号。