论文部分内容阅读
针对一类非线性带扰动系统提出了高阶PID采样迭代学习控制算法,讨论了高阶算法的收敛性问题以及该算法的优势与缺陷。与传统的证明方法不同,利用泰勒级数展开法证明了被控对象在输入干扰和输出测量噪声均有界的情况下,高阶PID采样迭代学习控制算法的收敛性,并且得出了收敛条件。由于收敛条件中没有积分项,因此更加利于分析计算。与传统的一阶采样迭代学习控制算法相比,高阶采样迭代学习控制算法由于利用了更多先前的控制信息而能使被控对象的实际输出更加接近理想输出。给出了相应的数值仿真,证明了理论分析的有效性。与此同时,结