论文部分内容阅读
提出一种基于朴素贝叶斯模型的新闻视频故事分割方法。通过对新闻视频进行镜头检测,获得候选故事边界点,从候选边界点周围镜头提取多模态中级特征,形成属性集合作为输入,应用朴素贝叶斯模型对候选边界点进行分类后对结果进行后处理,得到新闻故事。实验结果表明,该方法获得了较高的查准率和查全率,对不同类型的新闻节目有良好的适应性。