论文部分内容阅读
本文中谈到的参数问题是指用十大数学思想之一“参数思想”来解决的数学问题,我们简称参数问题.由于初等数学中没有学过“二元函数”以及“多元函数”,所以对超过两个变元的问题,时常可以用参数思想去认识,故称这类问题为参数问题更为适宜.一、参数对数学问题有一定的约束与影响.1.参数自身的约束作用:如函数 y=a~x,y=log_ax 中,由函数的定义就约束了口的取值范围是(0,1)或(1,+∞),2.隐含的约束作用:(1)约束函数的定义域;如 y=log_2(ax-1)中,由于 ax-1>0,故要用分类讨论的思想(或称逻辑化分思想)来解决,实际上参数 a 约束了函数中 x 的取值范围,即约束了函数的定
The parameter problem mentioned in this article refers to the mathematical problem solved by one of the ten major mathematics concepts: “parametric thinking”. We refer to the parameter problem for short. Since elementary mathematics did not learn “dual function” and “multivariate function”, The problem of more than two variables can often be recognized by parametric thinking. Therefore, it is more appropriate to call this type of problem a parameter problem. First, the parameter has certain constraints and influences on the mathematics problem. 1. The constraining function of the parameter itself: If the function y=a~x,y=log_ax, the definition of the function restricts the range of values of the mouth to (0,1) or (1,+∞). 2. Implicit constraint: (1) The domain of the constraint function; for example, y=log_2(ax-1), because ax-1>0, it is necessary to use the idea of classification discussion (or logicization subdivision) to solve, in fact, the parameter a constrains the function The range of values of x, that is, the constraints of the function