论文部分内容阅读
针对高分辨率遥感影像地物信息复杂、目标识别率低等问题,提出了一种联合矩阵低秩逼近的稀疏表示遥感影像目标识别方法。对原始遥感影像进行Radon变换,将处理过后的遥感影像进行低秩和稀疏分解,得到具有低秩性和稀疏性的两部分信息;通过K-SVD算法分别对这两部分信息进行字典学习,构建稀疏表示的判别字典;通过稀疏表示求解算法求解出待分类的目标在判别字典上的稀疏系数,根据稀疏系数最大准则对目标进行分类识别。在Uc Merced数据集上选取具有代表性的线性和非线性子集分别进行实验,结果表明所提算法与传统的SRC、