论文部分内容阅读
电势是电学中的重要概念,比较抽象难懂。传统教学中通常采用类比法,如“水位”、“地图的等高线”等来帮助学生理解这个抽象概念,实际上在理解较复杂的电荷系统时难以达到理想效果。电势线或电势面作为理解电场的图形化直观工具,对理解抽象的电场概念是有帮助的。目前微机仿真电势线或电势面的方法有多种,例如Matlab、Visual Basic等。考虑制作平台的容易得到性和普适程度,本文选择微软Office组件的Excel电子表格作为工具,完成点电荷电势分布的仿真模拟。
建模
一个孤立点电荷Q在空间P点产生的电势规律为
。从计算公式可见,用Excel电子表格仿真模拟电势分布的关键因素是点电荷电量Q和点电荷与空间P点之间距离R(因为4 0是常量)。为此,把电子表格设置成一个直角坐标系,利用电子表格的行列属性,将其中一个单元格定义为点电荷所在位置,并把该单元格的数值定义为点电荷的电量,其他单元格相对于定义为点电荷的单元格的距离定义为空间各点与点电荷之间的距离。这样,电势的计算就可以简化为
。为了实现计算结果的可视化,在把电子表格视为直角平面坐标系、把列距和行距视为X和Y坐标基础上,把每个单元格计算的电势值作为Z坐标,利用Excel工具栏中的3-D图表创建向导实现电势面的仿真模拟。
由于电势是标量,利用叠加原理,可以方便仿真模拟两个或两个以上点电荷在空间P点产生的电势分布情况。
制作
启动Excel,新建一个空白电子表格后,具体的仿真模拟步骤如下。
1.选择要作为直角平面坐标系的单元格(从单元格A1算起,应该选取30行和30列以上区域),调整行宽和列宽,使它们成为相当小的正方形或矩形,这样可以改善电势面仿真的不圆滑状况。
2.在左上角单元格A1内输入下列方程:
=Q/SQRT((COLUMN(Al)-COLUMN(Q))^2+(ROW)(Al)-ROW(Q))^2),由于从数学意义上讲,4πε0仅仅是对电势值进行缩放的一个常量,所以在方程中忽略了简化问题,这不影响仿真模拟的物理意义。输入方程后,单元格内可能会出现#NAME?,这是方程中的符号Q没有定义造成的,没必要担心,步骤5操作完毕后,自动会变成相应的数值。
3.用复制粘贴或拖曳方法将步骤⑵的方程复制到该区域其他单元格。
4.在接近表格中心附近选择一个单元格,将其作为点电荷所在位置,其数值设置为点电荷电量后,按回车键。
5.把步骤4的单元格命名为Q,然后按回车键。
6.选中所有单元格后,选择工具栏上的“图表向导”按钮,或从菜单栏上选择“插入图表”,根据提示,选择3-D表面图形类型,完成图表创建。
如果要仿真模拟两个或两个以上点电荷的电势分布,把步骤⑵的方程变为:
=Q1/SQRT((COLUMN(Al)-COLUMN(Q1))^2+(ROW)(Al)-ROW(Q1))^2)
+Q2/SQRT((COLUMN(Al)-COLUMN(Q2))^2+(ROW)(Al)-ROW(Q2))^2)
+…
在步骤4和5中设置每个点电荷对应的单元格数值和名字即可。
从制作过程可见,点电荷电势分布的上述仿真模拟方法对学生而言是容易掌握的。模拟图形直观可见,不论点电荷之间的电势面怎么平坦,它们之间的电势也不 等于零。这种可视化的仿真模拟,可以更好地帮助学生理解电势和电场的关系,提高学生的计算机操作技能,培养学生的空间智能。
建模
一个孤立点电荷Q在空间P点产生的电势规律为
。从计算公式可见,用Excel电子表格仿真模拟电势分布的关键因素是点电荷电量Q和点电荷与空间P点之间距离R(因为4 0是常量)。为此,把电子表格设置成一个直角坐标系,利用电子表格的行列属性,将其中一个单元格定义为点电荷所在位置,并把该单元格的数值定义为点电荷的电量,其他单元格相对于定义为点电荷的单元格的距离定义为空间各点与点电荷之间的距离。这样,电势的计算就可以简化为
。为了实现计算结果的可视化,在把电子表格视为直角平面坐标系、把列距和行距视为X和Y坐标基础上,把每个单元格计算的电势值作为Z坐标,利用Excel工具栏中的3-D图表创建向导实现电势面的仿真模拟。
由于电势是标量,利用叠加原理,可以方便仿真模拟两个或两个以上点电荷在空间P点产生的电势分布情况。
制作
启动Excel,新建一个空白电子表格后,具体的仿真模拟步骤如下。
1.选择要作为直角平面坐标系的单元格(从单元格A1算起,应该选取30行和30列以上区域),调整行宽和列宽,使它们成为相当小的正方形或矩形,这样可以改善电势面仿真的不圆滑状况。
2.在左上角单元格A1内输入下列方程:
=Q/SQRT((COLUMN(Al)-COLUMN(Q))^2+(ROW)(Al)-ROW(Q))^2),由于从数学意义上讲,4πε0仅仅是对电势值进行缩放的一个常量,所以在方程中忽略了简化问题,这不影响仿真模拟的物理意义。输入方程后,单元格内可能会出现#NAME?,这是方程中的符号Q没有定义造成的,没必要担心,步骤5操作完毕后,自动会变成相应的数值。
3.用复制粘贴或拖曳方法将步骤⑵的方程复制到该区域其他单元格。
4.在接近表格中心附近选择一个单元格,将其作为点电荷所在位置,其数值设置为点电荷电量后,按回车键。
5.把步骤4的单元格命名为Q,然后按回车键。
6.选中所有单元格后,选择工具栏上的“图表向导”按钮,或从菜单栏上选择“插入图表”,根据提示,选择3-D表面图形类型,完成图表创建。
如果要仿真模拟两个或两个以上点电荷的电势分布,把步骤⑵的方程变为:
=Q1/SQRT((COLUMN(Al)-COLUMN(Q1))^2+(ROW)(Al)-ROW(Q1))^2)
+Q2/SQRT((COLUMN(Al)-COLUMN(Q2))^2+(ROW)(Al)-ROW(Q2))^2)
+…
在步骤4和5中设置每个点电荷对应的单元格数值和名字即可。
从制作过程可见,点电荷电势分布的上述仿真模拟方法对学生而言是容易掌握的。模拟图形直观可见,不论点电荷之间的电势面怎么平坦,它们之间的电势也不 等于零。这种可视化的仿真模拟,可以更好地帮助学生理解电势和电场的关系,提高学生的计算机操作技能,培养学生的空间智能。