论文部分内容阅读
为了提高粒子群优化算法的性能,提出了一种完全Logistic混沌粒子群优化与遗传算法的混合优化方法。该方法将具有伪随机性与遍历性特征的Logistic混沌应用到粒子群算法的粒子位置和速度初始化、惯性权重优化、随机常数以及局部最优解邻域点产生的全过程,并在粒子速度和位置更新后再与遗传算法相混合,进行选择和交叉操作。三种典型Benchmark函数的实验结果验证了所提方法的有效性,该方法具有更好的寻优能力与收敛速度。