论文部分内容阅读
背景误差协方差矩阵的精确定义是构建高水平资料同化系统的先决条件。传统四维变分资料同化(4D-Var)方法将观测资料处理转化成以动力模式为约束的泛函极小化问题,通过调整控制变量,使指定时间窗口内由控制变量得到的模式预报结果与实际观测资料之间的偏差达到最小。该方法在同化窗口内可以利用模式的切线性和伴随隐式地改变背景误差协方差,能够在某种程度上满足快速发展的天气过程。但是大部分业务中心的四维变分资料同化系统仍采用静态化的背景误差协方差矩阵模型来缓解背景误差协方差矩阵的维度问题,即矩阵维数远大于可用信息量。随着计