论文部分内容阅读
供销社应站在时代的前列
【机 构】
:
中国社会科学院财贸经济研究所,中国社会科学院研究生院财贸系
【出 处】
:
中国供销合作经济
【发表日期】
:
2001年11期
其他文献
本文研究了Gellerstedt方程的基本解.利用超几何函数,获得了Gelerstedt方程关于平面上任一点的基本解.
设X为一致凸Banach空间,且其对偶空间具KK性质.C为X的非空闭凸子集,{Tn}n=(1,∞)为C上一族渐近非扩张映射.本文主要给出了{Tn}n=(1,∞)的弱收敛定理,同时利用相关的映射构造了{Tn}
设G是一个顶点数为n(≥5)最小度为δ的2-连通简单图。本文证明了若图G的每一对距离为2的顶点u,v都满足|N(u)∪N(v)|≥n-δ+1,则除非G属于某些特殊图类,它的任意一对顶点x,y之间都存在长度
引入了积分C半群局部Lipschitz连续的概念.利用逼近的思想给出了一类积微分方程求解的新方法.给出了一类抽象柯西问题存在mild解的充分条件.
根据高职院校的人才培养方案,结合实际岗位需求,分析了生物化学教学过程中存在的一些问题,提出了科学设置教学内容、优化教学手段、改进教学方法等提高生物化学教学效果的措
本文讨论了一类新的(θ,N)型分数次积分算子在加权Herz空间上的有界性.
在这篇文章中,我们利用H双模代数A和H双余模代数X构造了新代数,记做广义L-R扭smash积,并且给出了广义L-R扭smash积成为双代数的充分必要条件.此后,我们也做出了广义L-R扭smas
本文证明了方程+x<sup>2n+1</sup>+P<sub>x</sub>(x,t)=0所有解的有界性,其中n≥1,P(x,t)是关于两个变量x与t都是光滑的1-周期函数.
高斯过程是概率论和随机过程的主要研究内容之一,它在随机分析和随机控制领域有着重要应用.本文利用高斯过程的正态性构造预解算子,得出相应的性质.
由于左共轭梯度算法没有短迭代公式,因而计算左共轭梯度方向的代价会随着迭代次数的增多而不断提高.为了节约存贮量、减少计算成本,有效的不完全左共轭梯度技巧显得非常必要.本文