论文部分内容阅读
为准确提取步态特征、识别奶牛跛行,利用三维加速度传感器采集30头奶牛后趾加速度信号,针对奶牛步态人工分割的不足,提出基于改进的动态时间规整算法对奶牛步态进行分割,提取特征值并利用逻辑回归法建立跛行识别模型。采用本文方法得到的步态分割精确度、灵敏度、准确率平均值分别为89.53%、95.51%、87.49%,比常规动态时间规整算法分别提高了5.31、4.48、8.43个百分点,总体准确率达到90.57%,相较自相关函数法和峰值检测法分别提高了1.75、3.13个百分点。以支撑时间、步幅长度、平均强度、信号幅