论文部分内容阅读
使用传统的神经网络的短文本分类算法对其进行情感分类易出现定位误差等问题。为了解决对短文本情感分类时存在的定位误差,本文通过将词向量模型(Word2vec)、双向长短时记忆网络模型(BiLSTM)以及卷积神经网络(CNN)按照一定的框架进行组合,提出了Word2vec-CNN-BiLSTM的短文本情感分类模型。Word2vec-CNN-BiLSTM模型采用对预处理后的文本进行向量化表示来提取文章特征向量,并在神经网络层进行双向语义捕捉实现文本的情感分类。实验结果显示Word2vec-CNN-BiLSTM的短