论文部分内容阅读
基于支持向量的图像分割方法一般使用交互方式获取的训练样本,不可避免的在训练样本中引入歧义样本。这些歧义样本严重影响了基于支持向量机图像分割方法的性能。提出一种先对训练样本进行筛选,再进行分类(分割)的支持向量图像分割方法;并给出了一种基于支持向量机的样本筛选方法,可有效地降低歧义样本的影响。实验表明,经样本筛选的SVM分割方法有更好的分割性能。